Мой забор - Выбор. Законы. Изгородь. Калитка. Монтаж. Ограждения. Каменный

Мой забор - Выбор. Законы. Изгородь. Калитка. Монтаж. Ограждения. Каменный

» » Адронный коллайдер результаты. Открытия, сделанные в большом адронном коллайдере. Практическая польза Большого адронного коллайдера и фундаментальной науки

Адронный коллайдер результаты. Открытия, сделанные в большом адронном коллайдере. Практическая польза Большого адронного коллайдера и фундаментальной науки

Карта с нанесённым на неё расположением Коллайдера

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн , получившая своё развитие в М-теории (теории бран), теория супергравитации , петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии » - например, теория струн , которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

Изучение топ-кварков

История строительства

27-километровый подземный туннель, предназначенный для размещения ускорителя LHC

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году , после окончания работы предыдущего ускорителя - Большого электрон-позитронного коллайдера .

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·10 12 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·10 9 электронвольт) на каждую пару сталкивающихся нуклонов . Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов - протон-антипротонный коллайдер Тэватрон , который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер . Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии . Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита , общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года . Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

Испытания

Технические характеристики

Процесс ускорения частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме . Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем пучок направляют в главное 26,7-километровое кольцо и в точках столкновения детекторы фиксируют происходящие события.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 МВт . Предположительные энергозатраты всего кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы .

Распределённые вычисления

Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID ), использующая технологию грид . Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@home .

Неконтролируемые физические процессы

Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев, связанных с работой БАК, изложена на отдельном сайте. Из-за подобных настроений БАК иногда расшифровывают как Last Hadron Collider (Последний Адронный Коллайдер).

В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических чёрных дыр , а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными. Английский физик-теоретик Эдриан Кент опубликовал научную статью с критикой норм безопасности, принятых CERN, поскольку ожидаемый ущерб, то есть произведение вероятности события на число жертв, является, по его мнению, неприемлемым. Тем не менее, максимальная верхняя оценка вероятности катастрофического сценария на БАК составляет 10 -31 .

В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля , Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая релятивистский коллайдер тяжёлых ионов RHIC в Брукхейвене . Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что в нашем трёхмерном пространстве такие объекты могут возникать только при энергиях, на 16 порядков больших энергии пучков в БАК. Гипотетически микроскопические чёрные дыры могут появляться в экспериментах на БАК в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если чёрные дыры будут возникать при столкновении частиц в БАК, предполагается, что они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.

21 марта 2008 года в федеральный окружной суд штата Гавайи (США) был подан иск Уолтера Вагнера (англ. Walter L. Wagner ) и Луиса Санчо (англ. Luis Sancho ), в котором они, обвиняя CERN в попытке устроить конец света, требуют запретить запуск коллайдера до тех пор, пока не будет гарантирована его безопасность.

Сравнение с природными скоростями и энергиями

Ускоритель предназначен для сталкивания таких частиц, как адроны и атомарные ядра. Однако, существуют природные источники частиц, скорость и энергия которых значительно выше, чем в коллайдере (см.: Зэватрон). Такие природные частицы обнаруживают в космических лучах . Поверхность планеты Земля частично защищена от этих лучей, но, проходя через атмосферу, частицы космических лучей сталкиваются с атомами и молекулами воздуха. В результате этих природных столкновений в атмосфере Земли рождается множество стабильных и нестабильных частиц. В результате, на планете уже в течение многих миллионов лет присутствует естественный радиационный фон. То же самое (сталкивание элементарных частиц и атомов) будет происходить и в БАК, однако с меньшими скоростями и энергиями, и в гораздо меньшем количестве.

Микроскопические чёрные дыры

Если чёрные дыры могут возникать в ходе столкновения элементарных частиц, они также будут и распадаться на элементарные частицы, в соответствии с принципом CPT-инвариантности , являющимся одним из самых фундаментальных принципов квантовой механики.

Далее, если бы гипотеза существования стабильных чёрных микро-дыр была верна, то они бы образовывались в больших количествах в результате бомбардировки Земли космическими элементарными частицами. Но бо́льшая часть прилетающих из космоса высокоэнергетических элементарных частиц обладают электрическим зарядом, поэтому часть чёрных дыр были бы электрически заряжены. Эти заряженные чёрные дыры захватывались бы магнитным полем Земли и, будь они в самом деле опасны, давно разрушили бы Землю. Механизм Швиммера, делающий чёрные дыры электрически нейтральными, очень похож на эффект Хокинга и не может работать, если эффект Хокинга не работает.

К тому же, любые чёрные дыры, заряженные или электрически нейтральные, захватывались бы белыми карликами и нейтронными звёздами (которые, как и Земля, бомбардируются космическим излучением) и разрушали их. В результате время жизни белых карликов и нейтронных звёзд было бы гораздо короче, чем наблюдаемое в действительности. Кроме того, разрушаемые белые карлики и нейтронные звёзды испускали бы дополнительное излучение, которое в действительности не наблюдается.

Наконец, теории с дополнительными пространственными измерениями, предсказывающие возникновение микроскопических чёрных дыр, не противоречат экспериментальным данным, только если количество дополнительных измерений не меньше трёх. Но при таком количестве дополнительных измерений должны пройти миллиарды лет, прежде чем чёрная дыра причинит Земле сколько-нибудь существенный вред.

Страпельки

Противоположных взглядов придерживается доктор физико-математических наук из НИИ ядерной физики МГУ Эдуард Боос, отрицающий возникновение на БАК макроскопических чёрных дыр, а следовательно, «кротовых нор» и путешествий во времени .

Примечания

  1. The ultimate guide to the LHC (англ.) P. 30.
  2. LHC: ключевые факты . «Элементы большой науки». Проверено 15 сентября 2008.
  3. Tevatron Electroweak Working Group, Top Subgroup
  4. LHC synchronization test successful (англ.)
  5. Второй тест системы инжекции прошёл с перебоями, но цели достиг . «Элементы большой науки» (24 августа 2008). Проверено 6 сентября 2008.
  6. LHC milestone day gets off to fast start
  7. First beam in the LHC - accelerating science .
  8. Mission complete for LHC team . physicsworld.com. Проверено 12 сентября 2008.
  9. На LHC запущен стабильно циркулирующий пучок . «Элементы большой науки» (12 сентября 2008). Проверено 12 сентября 2008.
  10. Происшествие на Большом адронном коллайдере задерживает эксперименты на неопределённый срок . «Элементы большой науки» (19 сентября 2008). Проверено 21 сентября 2008.
  11. Большой адронный коллайдер возобновит работу не раньше весны - ЦЕРН . РИА «Новости» (23 сентября 2008). Проверено 25 сентября 2008.
  12. http://press.web.cern.ch/Press/PressReleases/Releases2008/PR14.08E.html
  13. https://edms.cern.ch/file/973073/1/Report_on_080919_incident_at_LHC__2_.pdf
  14. https://lhc2008.web.cern.ch/LHC2008/inauguration/index.html
  15. Ремонт поврежденных магнитов будет более объемным, чем казалось ранее . «Элементы большой науки» (09 ноября 2008). Проверено 12 ноября 2008.
  16. Расписание на 2009 год . «Элементы большой науки» (18 января 2009). Проверено 18 января 2009.
  17. Пресс-релиз ЦЕРН
  18. Утверждён план работы Большого адронного коллайдера на 2009-2010 годы . «Элементы большой науки» (6 февраля 2009). Проверено 5 апреля 2009.
  19. The LHC experiments .
  20. «Ящик Пандоры» открывается . Вести.ру (9 сентября 2008). Проверено 12 сентября 2008.
  21. The Potential for Danger in Particle Collider Experiments (англ.)
  22. Dimopoulos S., Landsberg G. Black Holes at the Large Hadron Collider (англ.) Phys. Rev. Lett. 87 (2001)
  23. Blaizot J.-P. et al. Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC.
  24. Review of the Safety of LHC Collisions LHC Safety Assessment Group
  25. Критический обзор рисков ускорителей . Проза.ру (23 мая 2008). Проверено 17 сентября 2008.
  26. Какова вероятность катастрофы на LHC?
  27. Судный день
  28. Asking a Judge to Save the World, and Maybe a Whole Lot More (англ.)
  29. Объяснение того, почему БАК будет безопасным (англ.)
  30. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-es.pdf (исп.)
  31. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-de.pdf (нем.)
  32. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-fr.pdf (фр.)
  33. H. Heiselberg. Screening in quark droplets // Physical Review D. - 1993. - Т. 48. - № 3. - С. 1418-1423. DOI :10.1103/PhysRevD.48.1418
  34. M. Alford, K. Rajagopal, S. Reddy, A. Steiner. Stability of strange star crusts and strangelets // The American Physical Society. Physical Review D. - 2006. - Т. 73, 114016. DOI :10.1103/PhysRevD.73.114016 arΧiv :hep-ph/0604134
  35. Наталия Лескова.

Ею является поиск путей объединения двух фундаментальных теорий – ОТО (о гравитационном ) и СМ (стандартной модели, объединяющей три фундаментальных физических взаимодействия – электромагнитного, сильного и слабого). Нахождению решения до создания БАКа препятствовали трудности при создании теории квантовой гравитации.

Построение этой гипотезы включает в себя соединение двух физических теорий – квантовой механики и общей теории относительности.

Для этого были использованы сразу несколько популярных и нужных в современной подходов – струнная теория, теория бран, теория супергравитации, а также теория квантовой гравитации. До построения колайдера главной проблемой проведения необходимых экспериментов являлось отсутствие энергии, которую нельзя достичь на других современных ускорителях заряженных частиц.

Женевский БАК дал ученым возможность проведения ранее неосуществимых экспериментов. Считается, что уже в скором будущем при помощи аппарата будут подтверждены или опровергнуты многие физические теории. Одной из самых проблемных является суперсимметрия или теория струн, которая долгое время разделяла физическое на два лагеря – «струнщиков» и их соперников.

Другие фундаментальные эксперименты, проводимые в рамках работы БАК

Интересны и изыскания ученых в области изучения топ- , являющихся самыми кварками и наиболее тяжелыми (173,1 ± 1,3 ГэВ/c²) из всех известных в настоящее время элементарных частиц.

Из-за этого свойства и до создания БАКа, ученые могли наблюдать кварки только на ускорителе «Тэватрон», так как прочие устройства просто не обладали достаточной мощностью и энергией. В свою очередь, теория кварков представляет собой важный элемент нашумевшей гипотезы о бозоне Хиггса.

Все научные изыскания по созданию и изучению свойств кварков ученые производят в топ-кварк-антикварковой паровой в БАКе.

Важной целью женевского проекта также является процесс изучения механизма электрослабой симметрии, которая также связана с экспериментальным доказательством существования бозона Хиггса. Если обозначить проблематику еще точнее, то предметом изучения является не столько сам бозон, сколько предсказанный Питером Хиггсом механизм нарушения симметрии электрослабого взаимодействия.

В рамках БАКа также проводятся эксперименты по поиску суперсимметрии – причем желаемым результатом станет и доказательство теории о том, что любая элементарная частица всегда сопровождается более тяжелым партнером, и ее опровержение.

Словосочетание «Большой адронный коллайдер» настолько глубоко осело в массмедиа, что о данной установке знает подавляющее количество людей, в числе которых и те, чья деятельность никоим образом не связано с физикой элементарных частиц, и с наукой вообще.

Действительно, столь масштабный и дорогой проект не мог обойти стороной СМИ – кольцевая установка длиной почти в 27 километров, ценою в десяток миллиардов долларов, с которой работает несколько тысяч научных сотрудников со всего мира. Немалую лепту в популярность коллайдера внесла так называемая «частица Бога» или бозон Хиггса, который был успешно разрекламирован, и за который Питер Хиггс получил нобелевскую премию по физике в 2013-м году.

Прежде всего следует отметить, что Большой адронный коллаейдер не строился с нуля, а возник на месте своего предшественника — Большого электрон-позитронного коллайдера (Large Electron-Positron collider или LEP). Работа над 27-микилометровом тоннелем началась в 1983-м году, где в дальнейшем планировалось расположить ускоритель, который будет осуществлять столкновение электроном и позитронов. В 1988-м году кольцевой тоннель сомкнулся, при этом рабочие подошли к проведению тоннеля столь тщательно, что расхождение между двумя концами тоннеля составило всего 1 сантиметр.

Ускоритель проработал до конца 2000-го года, когда достиг своего пика – энергии в 209 ГэВ. После этого начался его демонтаж. За одиннадцать лет своей работы LEP принес физике ряд открытий, в числе которых – открытие W и Z бозонов и их дальнейшие исследования. На основе результатов этих исследований был сделан вывод о сходстве механизмов электромагнитного и слабого взаимодействий, вследствие чего начались теоретические работы по объединению этих взаимодействий в электрослабое.

В 2001-м году на месте электрон-позитронного ускорителя началась постройка Большого адронного коллайдера. Строительство нового ускорителя завершилось в конце 2007-го года. Он располагался на месте LEP – на границе между Францией и Швейцарией, в долине Женевского озера (в 15 км от Женевы), на глубине ста метров. В августе 2008-го года начались испытания коллайдера, а 10-го сентября произошел официальный запуск БАКа. Как и в случае с предыдущим ускорителем, строительство и работа с установкой возглавляется Европейской организацией по ядерным исследованиям – ЦЕРН.

ЦЕРН

Вкратце стоит сказать об организации CERN (Conseil Européenne pour la Recherche Nucléaire). Данная организация выступает в роли крупнейшей мировой лаборатории в области физики высоких энергий. Включает три тысячи постоянных сотрудников, и еще несколько тысяч исследователей и ученых из 80 стран принимают участие в проектах ЦЕРНа.

На данный момент участниками проекта является 22 страны: Бельгия, Дания, Франция, Германия, Греция, Италия, Нидерланды, Норвегия, Швеция, Швейцария, Великобритания – учредители, Австрия, Испания, Португалия, Финляндия, Польша, Венгрия, Чехия, Словакия, Болгария и Румыния – присоединившиеся. Однако, как уже было сказано выше – еще несколько десятков стран так или иначе принимают участие в работе организации, и в частности – на Большом адронном коллайдере.

Как работает Большой адронный коллайдер?

Что такое Большой адронный коллайдер и как он работает – основные вопросы, интересующие общественность. Рассмотрим эти вопросы далее.

Коллайдер (collider) – в переводе с английского означает «тот, кто сталкивает». Задача такой установки состоит в столкновении частиц. В случае с адроннмы коллайдером, в роли частиц выступают адроны – частицы, участвующие в сильном взаимодействии. Таковыми являются протоны.

Получение протонов

Долгий путь протонов берет свое начало в дуоплазматроне – первой ступени ускорителя, куда поступает водород в виде газа. Дуоплазматрон представляет собой разрядную камеру, где через газ проводится электрический разряд. Так водород, состоящий всего из одного электрона и одного протона, теряет свой электрон. Таким образом образуется плазма – вещество, состоящее из заряженных частиц – протонов. Конечно, получить чистую протонную плазму сложно, поэтому далее образованная плазма, включающая также облако молекулярных ионов и электронов, проходит фильтрацию для выделения облака протонов. Под действием магнитов протонная плазма сбивается в пучок.

Предварительный разгон частиц

Новообразованный пучок протонов начинает свой путь в линейном ускорителе LINAC 2, который представляет собой 30-тиметровое кольцо, последовательно увешенное несколькими полыми цилиндрическими электродами (проводниками). Создаваемое внутри ускорителя электростатическое поле градуировано таким образом, что частицы между полыми цилиндрами всегда испытывают ускоряющую силу в направлении следующего электрода. Не углубляясь целиком в механизм разгона протонов на данном этапе, отметим лишь, что на выходе с LINAC 2 физики получают пучок протонов с энергией 50 МэВ, которые уже достигают 31% скорости света. Примечательно, что при этом масса частиц возрастает на 5%.

К 2019-2020-му году планируется замена LINAC 2 на LINAC 4, который будет разгонять протоны до 160 МэВ.

Стоит отметить, что на коллайдере также разгоняют ионы свинца, которые позволят изучить кварк-глюонную плазму. Их разгоняют в кольце LINAC 3, аналогичном LINAC 2. В дальнейшем также планируются эксперименты с аргоном и ксеноном.

Далее пакеты протонов поступают в протон-синхронный бустер (PSB). Он состоит из четырех наложенных колец диаметром 50 метров, в которых располагаются электромагнитные резонаторы. Создаваемое ими электромагнитное поле имеет высокую напряженность, и проходящая через него частица получает ускорение в результате разности потенциалов поля. Так спустя всего 1,2 секунды частицы разгоняются в PSB до 91% скорости света и достигают энергии в 1,4 ГэВ, после чего поступают в протонный-синхротрон (PS). Диаметр PS составляет 628 метров и оснащен 27 магнитами, направляющими пучок частиц по круговой орбите. Здесь частиц протоны достигают 26 ГэВ.

Предпоследним кольцом для разгона протонов служит Суперпротонный-синхротрон (SPS), длина окружности которого достигает 7 километров. Будучи оснащенным 1317-ю магнитами SPS разгоняет частицы до энергии в 450 ГэВ. Спустя примерно 20 минут пучок протонов попадает в основное кольцо – Большой адронный коллайдер (LHC).

Разгон и столкновение частиц в LHC

Переходы между кольцами ускорителей происходят посредством электромагнитных полей, создаваемых мощными магнитами. Основное кольцо коллайдеро состоит из двух параллельных линий, в которых частицы движутся по кольцевой орбите в противоположном направлении. За сохранение круговой траектории частиц и направление их в точки столкновения отвечают около 10 000 магнитов, масса некоторых из них достигает 27 тонн. Во избежание перегрева магнитов используется контур гелия-4, по которому протекает примерно 96 тонн вещества при температуре -271,25 ° С (1,9 К). Протоны достигают энергии в 6,5 ТэВ (то есть энергия столкновения – 13 ТэВ), при этом их скорость на 11 км/ч меньше скорости света. Таким образом за секунду пучок протонов проходит большое кольцо коллайдера 11 000 раз. Прежде, чем произойдет столкновение частиц, они будут циркулировать по кольцу от 5 до 24 часов.

Столкновение частиц происходит в четырех точках основного кольца LHC, в которых располагаются четыре детектора: ATLAS, CMS, ALICE и LHCb.

Детекторы Большого адронного коллайдера

ATLAS (A Toroidal LHC ApparatuS)

— является одним из двух детекторов общего назначения на Большом адронном коллайдере (LHC). Он исследует широкий спектр физики: от поиска бозона Хиггса до частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент CMS, ATLAS использует иные технические решения и другую конструкцию магнитной системы.

Пучки частиц из LHC сталкиваются в центре детектора ATLAS, образуя встречные обломки в виде новых частиц, которые вылетают из точки столкновения во всех направлениях. Шесть различных детектирующих подсистем, расположенных в слоях вокруг точки столкновения, записывают пути, импульс и энергию частиц, позволяя их индивидуально идентифицировать. Огромная система магнитов искривляет пути заряженных частиц, так что их импульсы можно измерить.

Взаимодействия в детекторе ATLAS создают огромный поток данных. Чтобы обработать эти данные, ATLAS использует расширенную «триггерную» систему, позволяющую сообщать детектору, какие события записывать, а какие игнорировать. Затем для анализа зарегистрированных событий столкновения используются сложные системы сбора данных и вычисления.

Детектор имеет высоту 46 метров и ширину – 25 метров, при этом его масса составляет 7 000 тонн. Эти параметры делает ATLAS самым большим детектором частиц, когда-либо созданным. Он находится в тоннеле на глубине в 100 м вблизи главного объекта ЦЕРН, недалеко от деревни Мейрин в Швейцарии. Установка состоит из 4 основных компонентов:

  • Внутренний детектор имеет цилиндрическую форму, внутреннее кольцо находится всего в нескольких сантиметрах от оси проходящего пучка частиц, а внешнее кольцо имеет диаметр в 2,1 метра и длину 6,2 метра. Он состоит из трех различных систем датчиков, погруженных в магнитное поле. Внутренний детектор измеряет направление, импульс и заряд электрически заряженных частиц, образующихся при каждом протон-протонном столкновении. Основные элементы внутреннего детектора: пиксельный детектор (Pixel Detector), полупроводниковая система слежения (Semi-Conductor Tracker, SCT) и трековый детектор переходного излучения (Transition radiation tracker, TRT).

  • Калориметры измеряют энергию, которую частица теряет, когда проходит через детектор. Он поглощает частицы, возникающие при столкновении, тем самым фиксирую их энергию. Калориметры состоят из слоев «поглощающего» материала с высокой плотностью — свинца, чередующегося со слоями «активной среды» — жидкого аргона. Электромагнитные калориметры измеряют энергию электронов и фотонов при взаимодействии с веществом. Адронные калориметры измеряют энергию адронов при взаимодействии с атомными ядрами. Калориметры могут останавливать большинство известных частиц, кроме мюонов и нейтрино.

LAr (Liquid Argon Calorimeter) — калориметр ATLAS

  • Мюонный спектрометр – состоит из 4000 индивидуальных мюонных камер, использующих четыре различные технологи, позволяющие, идентифицировать мюоны и измерить их импульсы. Мюоны обычно проходят через внутренний детектор и калориметр, а потому требуется наличие мюонного спектрометра.

  • Магнитная система ATLAS изгибает частицы вокруг различных слоев детекторных систем, что упрощает отслеживание треков частиц.

В эксперименте ATLAS (февраль 2012 г.) работают более 3 000 ученых из 174 институтов из 38 стран.

CMS (Compact Muon Solenoid)

— является детектором общего назначения на Большом адронном коллайдере (LHC). Как и ATLAS, имеет широкую физическую программу, начиная от изучения стандартной модели (включая бозон Хиггса) до поиска частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент ATLAS, CMS использует иные технические решения и другую конструкцию магнитной системы.

Детектор CMS построен вокруг огромного магнита соленоида. Представляет собой цилиндрическую катушку сверхпроводящего кабеля, которая генерирует поле в 4 тесла, примерно в 100 000 раз превышающее магнитное поле Земли. Поле ограничено стальным «хамутом», который является массивнейшим компонентом детектора, масса которого — 14 000 тонн. Полный детектор имеет длину — 21 м, ширину — 15 м и высоту — 15 м. Установка состоит из 4 основных компонентов:

  • Магнит соленоида – крупнейший магнит в мире, который служит для изгиба траектории заряженных частиц, вылетающих из точки столкновения. Искажение траектории позволяет различить положительно и отрицательно заряженные частицы (т.к. они изгибаются в противоположных направлениях), а также измерить импульс, величина которого зависит от кривизны траектории. Огромные размеры соленоида позволяют расположить трекер и калориметры внутри катушки.
  • Кремниевый трекер — состоит из 75 миллионов отдельных электронных датчиков, расположенных в концентрических слоях. Когда заряженная частица пролетает через слои трекера, она передает часть энергии каждому слою, объединение этих точек столкновения частицы с различными слоями позволяет в дальнейшем определить ее траекторию.
  • Калориметры – электронный и адронный см. калориметры ATLAS.
  • Саб-детекторы – позволяют детектировать мюоны. Представлены 1 400 мюонными камерами, которые слоями располагаются вне катушки, чередуясь с металлическими пластинами «хамута».

Эксперимент CMS является одним из крупнейших международных научных исследований в истории, в котором принимают участие 4300 человек: физики в области элементарных частиц, инженеры и техники, студенты и вспомогательный персонал из 182 институтов, 42 стран (февраль 2014 года).

ALICE (A Large Ion Collider Experiment)

— представляет собой детектор тяжелых ионов на кольцах большого адронного коллайдера (LHC). Он предназначен для изучения физики сильно взаимодействующего вещества при экстремальных плотностях энергии, где образуется фаза вещества, называемая кварк-глюонной плазмой.

Вся обычная материя в сегодняшней вселенной состоит из атомов. Каждый атом содержит ядро, состоящее из протонов и нейтронов (кроме водорода, не имеющего нейтронов), окруженного облаком электронов. Протоны и нейтроны, в свою очередь, состоят из кварков, связанных вместе с другими частицами, называемыми глюонами. Никакой кварк никогда не наблюдался изолированно: кварки, а также глюоны, по-видимому, постоянно связаны вместе и ограничены внутри составных частиц, таких как протоны и нейтроны. Это называется конфайнментом.

Столкновения в LHC создают температуры более чем в 100 000 раз более горячее, чем в центре Солнца. Колллайдер обеспечивает столкновения между свинцовыми ионами, воссоздавая условия, аналогичные тем, которые имели место сразу после Большого Взрыва. В этих экстремальных условиях протоны и нейтроны «расплавляются», освобождая кварки от их связей с глюонами. Это и есть кварк-глюонная плазма.

В эксперименте ALICE используется детектор ALICE массой 10 000 тонн, 26 м в длину, 16 м в высоту и 16 м в ширину. Устройство состоит из трех основных комплектов компонентов: трэкинговых устройств, калориметров и детекторов-идентификаторов частиц. Также его разделяют на 18 модулей. Детектор находится в тоннеле на глубине 56 м под, недалеко от деревни Сент-Денис-Пуйи во Франции.

Эксперимент насчитывает более 1 000 ученых из более чем 100 институтов физики в 30 странах.

LHCb (Large Hadron Collider beauty experiment)

– в рамках эксперимента проводится исследование небольших различий между веществом и антиматерией, изучая тип частицы, называемый «бьюти-кварк» или «b-кварк».

Вместо того, чтобы окружать всю точку столкновения с помощью закрытого детектора, как ATLAS и CMS, эксперимент LHCb использует серию сабдетекторов для обнаружения преимущественно передних частиц — тех, которые были направлены вперед в результате столкновения в одном направлении. Первый сабдетектор установлен близко к точке столкновения, а остальные — один за другим на расстоянии 20 метров.

На LHC создается большое изобилие различных типов кварков, прежде чем они быстро распадаются на другие формы. Чтобы поймать b-кварки, для LHCb были разработаны сложные движущиеся следящие детекторы, расположенные вблизи движения пучка частиц по коллайдеру.

5600-тонный детектор LHCb состоит из прямого спектрометра и плоских детекторов. Это 21 метр в длину, 10 метров в высоту и 13 метров в ширину, он находится на глубине 100 метров под землей. Около 700 ученых из 66 различных институтов и университетов вовлечены в эксперимент LHCb (октябрь 2013 г.).

Другие эксперименты на коллайдере

Помимо вышеперечисленных экспериментов на Большом адронном коллайдере есть другие два эксперимента с установками:

  • LHCf (Large Hadron Collider forward) — изучает частицы, выброшенные вперед после столкновения пучков частиц. Они имитируют космические лучи, исследованием которых и занимаются ученые в рамках эксперимента. Космические лучи — это естественные заряженные частицы из космического пространства, которые постоянно бомбардируют земную атмосферу. Они сталкиваются с ядрами в верхней атмосфере, вызывая каскад частиц, которые достигают уровня земли. Изучение того, как столкновения внутри LHC вызывают подобные каскады частиц, поможет физикам интерпретировать и откалибровать крупномасштабные эксперименты с космическими лучами, которые могут охватывать тысячи километров.

LHCf состоит из двух детекторов, которые расположены вдоль LHC, на расстоянии 140 метров с обеих сторон он точки столкновения ATLAS. Каждый из двух детекторов весит всего 40 килограммов и имеет размеры 30 см в длину, 80 см в высоту и 10 см в ширину. В эксперименте LHCf участвуют 30 ученых из 9 институтов в 5 странах (ноябрь 2012 г.).

  • TOTEM (Total Cross Section, Elastic Scattering and Diffraction Dissociation) – эксперимент с самой длинной установкой на коллайдере. Его задачей является исследование самих протонов, путем точного измерения протонов, возникающих при столкновениях под малыми углами. Эта область известна как «прямое» направление и недоступна другим экспериментам LHC. Детекторы TOTEM распространяются почти на полкилометра вокруг точки взаимодействия CMS. TOTEM имеет почти 3 000 кг оборудования, в том числе четыре ядерных телескопа, а также 26 детекторов типа «римский горшок». Последний тип позволяет расположить детекторы максимально близко к пучку частиц. Эксперимент TOTEM включает около 100 ученых из 16 институтов в 8 странах (август 2014 года).

Зачем нужен Большой адронный коллайдер?

Крупнейшая международная научная установка исследует широкий спектр физических задач:

  • Изучение топ-кварков. Данная частица является не только самым тяжелым кварком, но и самой тяжелой элементарной частицей. Исследование свойств топ-кварка также имеет смысл, потому что он является инструментом для исследования .
  • Поиск и изучение бозона Хиггса. Хотя ЦЕРН утверждает, что бозон Хиггса был уже обнаружен (в 2012-м году), пока о его природе известно совсем немного и дальнейшие исследования могли бы внести большую ясность в механизм его работы.

  • Изучение кварк-глюонной плазмы. При столкновениях ядер свинца на больших скоростях – в коллайдере образуется . Ее исследование может принести результаты, полезные как для ядерной физики (улучшение теории сильных взаимодействий), так и для астрофизики (изучение Вселенной в ее первые моменты существования).
  • Поиск суперсимметрии. Это исследование направлено на опровержение или доказательство «суперсимметрии» — теории, согласно которой любая элементарная частица имеет более тяжелого партнера, называемого «суперчастицей».
  • Исследование фотон-фотонных и фотон-адронных столкновений. Позволит улучшить понимание механизмов процессов подобных столкновений.
  • Проверка экзотических теорий. К этой категории задач относятся самые нетрадиционные – «экзотические», например, поиск параллельных вселенных посредством создания мини-черных дыр.

Кроме этих задач, существует еще множество других, решение которых также позволит человечеству понимать природу и окружающий нас мир на более качественном уровне, что в свою очередь откроет возможности для создания новых технологий.

Практическая польза Большого адронного коллайдера и фундаментальной науки

Прежде всего, следует отметить, что фундаментальные исследования привносят вклад в фундаментальную науку. Применением же этих знаний занимается прикладная наука. Сегмент общества, не осведомленный в пользе фундаментальной науки зачастую не воспринимает открытие бозона Хиггса или создание кварк-глюонной плазмы, как нечто значимое. Связь подобных исследований с жизнью рядового человека – неочевидно. Рассмотрим краткий пример с атомной энергетикой:

В 1896-м году французский физик Антуан Анри Беккерель открыл явление радиоактивности. Долгое время считалось, что к ее промышленному использованию человечество перейдет нескоро. Всего за пять лет до запуска первого в истории ядерного реактора великий физик Эрнест Резерфорд, собственно открывший атомное ядро в 1911-м году, говорил, что атомная энергия никогда не найдет своего применения. Переосмыслить свое отношение к энергии, заключенной в ядре атома, специалистам удалось в 1939 году, когда немецкие ученые Лиза Мейтнер и Отто Ган обнаружили, что ядра урана при облучении их нейтронами делятся на две части с выделением огромного количества энергии - ядерной энергии.

И лишь после этого последнего звенья ряда фундаментальных исследований в игру вступила прикладная наука, которая на основе этих открытий изобрела устройство для получения ядерной энергии – атомный реактор. Масштаб открытия можно оценить, ознакомившись с долей выработки электроэнергии атомными реакторами. Так в Украине, например, на АЭС выпадает 56% выработки электроэнергии, а во Франции и вовсе – 76%.

Все новые технологии основываются на тех или иных фундаментальных знаниях. Приведем еще пару кратких примеров:

  • В 1895-м году Вильгельм Конрад Рентген заметил, что под действием рентгеновского излучения фотопластинка затемняется. Сегодня рентгенография – одно из наиболее применяемых исследований в медицине, позволяющая изучить состояние внутренних органов и обнаружить инфекции и опухали.
  • В 1915-м году Альберт Эйнштейн предложил свою . Сегодня эта теория учитывается при работе GPS спутников, которые определяют местоположение объекта с точностью до пары метров. GPS применяется в сотовой связи, картографии, мониторинге транспорта, но в первую очередь – в навигации. Погрешность спутника, не учитывающего ОТО, с момента запуска росла бы на 10 километров в день! И если пешеход может воспользоваться разумом и бумажной картой, то пилоты авиалайнера попадут в затруднительную ситуацию, так как ориентироваться по облакам – невозможно.

Если сегодня практическое применение открытиям, произошедшим на LHC еще не найдено – это не значит, что ученые «возятся на коллайдере зря». Как известно, человек разумный всегда намеревается получить максимум практического применения из имеющихся знаний, а потому знания о природе, накопленные в процессе исследования на БАК, определенно найдут свое применение, рано или поздно. Как уже было продемонстрировано выше – связь фундаментальных открытий и использующих их технологий иногда может быть совсем не очевидна.

Напоследок, отметим так называемые косвенные открытия, которые не ставятся как изначальные цели исследования. Они встречаются довольно часто, так как для совершения фундаментального открытия, обычно, требуется внедрение и использование новых технологий. Так развитие оптики получило толчок от фундаментальных исследований космоса, строящихся на наблюдениях астрономов через телескоп. В случае с ЦЕРН – так возникла повсеместно применяемая технология – Интернет, проект, предложенный Тимом Бернерсом-Ли в 1989-м году для облегчения поиска данных организации ЦЕРН.

Немного фактов о Большом адронном коллайдере, как и для чего он создан, какой с него прок и какие потенциальные опасности для человечества он таит.

1. Строительство БАК’а, или Большого адронного коллайдера, задумали еще в 1984 году, а начали только в 2001. Спустя 5 лет, в 2006 году, благодаря усилиям более чем 10-ти тысяч инженеров и ученых из разных государств, строительство Большого адронного коллайдера было завершено.

2. БАК — это самая большая экспериментальная установка в мире.

3. Так почему же Большой адронный коллайдер?
Большим его назвали благодаря его солидным размерам: длина основного кольца, по которому гоняют частицы, составляет порядка 27 км.
Адронным — так как установка ускоряет адроны (частицы, которые состоят из кварков).
Коллайдером — из-за ускоряющихся в противоположном направлении пучков частиц, которые сталкиваются друг с другом в специальных точках.

4. Для чего нужен Большой адронный коллайдер? БАК представляет из себя суперсовременный исследовательский центр, где ученые проводят опыты с атомами, сталкивая между собой на огромной скорости ионы и протоны. Ученые надеются с помощью исследований приоткрыть завесу над тайнами появления Вселенной.

5. Проект обошелся научному сообществу в астрономическую сумму — 6 млрд. долларов. Кстати, Россия делегировала на БАК 700 специалистов, которые работают и по сей день. Заказы для БАК принесли российским предприятиям порядка 120 млн долларов.

6. Без сомнений, главное открытие, сделанное в БАК — открытие в 2012 г. бозона Хиггса, или как его еще называют «частицы Бога». Бозон Хигса — это последнее звено в Стандартной модели. Еще одно значительное событие в Бак’е — достижение рекордного значения энергии столкновений в 2,36 тераэлектронвольта.

7. Некоторые ученые, в том числе и в России, считают, что благодаря масштабным экспериментам в ЦЕРН’е (Европейской организации по ядерным исследованиям, где, собственно, и расположен коллайдер), ученым удастся построить первую в мире машину времени. Однако большинство ученых не разделяют оптимизма коллег.

8. Главные опасения человечества по поводу самого мощного на планете ускорителя основаны на опасности, которая грозит человечеству, в результате образования микроскопических черных дыр, способных к захвату окружающей материи. Есть еще одна потенциальная и крайне опасная угроза — возникновения страпелек (произв. от Странная капелька), которые, гипотетически, способны при столкновении с ядром какого-либо атома, образовывать все новые страпельки, преобразуя материю всей Вселенной. Однако большинство самых авторитетных ученых заявляют, что такой исход маловероятен. Но теоретически возможен

9. В 2008 году на ЦЕРН подали в суд двое жителей штата Гавайи. Они обвинили ЦЕРН в попытке положить конец человечеству из-за халатности, требуя от ученых гарантий на безопасность.

10. Большой адронный коллайдер расположен в Швейцарии недалеко от Женевы. В ЦЕРНе функционирует музей, где посетителям наглядно объясняют о принципах работы коллайдера и для чего он был построен.

11 . Ну и напоследок немного забавный факт. Судя по запросам в Яндексе, многие люди, которые ищут информацию о Большом адронном коллайдере, не знают как правильно пишется название ускорителя. Например, пишут «аНдронный» (и не только пишут, чего стоят репортажи НТВ с их аНдронным коллайдером), порой пишут «андроидный» (Империя наносит ответный удар). В буржуйском нете тоже не отстают и вместо «hadron» вбивают в поисковик «hardon» (на православном английском hard-on — стояк). Интересен вариант написания на белорусском — «Вялікі гадронны паскаральнік», что переводится как «Большой гадронный ускоритель».

Адронный коллайдер. Фото

(или БАК) - на данный момент самый большой и мощный ускоритель частиц в мире. Эта махина была запущена в 2008 году, но долго работала на пониженных мощностях. Разберемся, что это такое и зачем нужен большой адронный коллайдер.

История, мифы и факты

Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных страхах и ужасах, связанных с запуском коллайдера.

Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:

Вся Вселенная, конечно, в самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.

А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.

Адроны делятся на барионы и мезоны. Чтобы было проще, скажем, что из барионов состоит почти все известное нам вещество. Упростим еще больше и скажем, что барионы - это нуклоны (протоны и нейтроны, составляющие атомное ядро).

Как работает большой адронный коллайдер

Масштаб очень впечатляет. Коллайдер представляет собой кольцевой туннель, залегающий под землей на глубине ста метров. Длина большого адронного коллайдера составялет 26 659 метров. Протоны, разогнанные до скоростей близких к скорости света, пролетают в подземном круге по территории Франции и Швейцарии. Если говорить точно, то глубина залегания туннеля лежит в пределах от 50 до 175 метров. Для фокусировки и удержания пучков летящих протонов используются сверхпроводящие магниты, их общая длина составляет около 22 километров, а работают они при температуре -271 градусов по Цельсию.

В составе коллайдера 4 гигантских детектора: ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.

Результаты работы большого адронного коллайдера.

Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».

Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц , получены первые данные столкновений на рекордных энергиях , показано отсутствие асимметрии протонов и антипротонов , обнаружены необычные корреляции протонов . Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.

И это при том, что коллайдер еще не разогнали до его максимальной мощности. Сейчас максимальная энергия большого адронного коллайдера – 13 ТэВ (тера электрон-Вольт). Однако, после соответствующей подготовки протоны планируют разогнать до 14 ТэВ . Для сравнения, в ускорителях- предшественниках БАК максимально полученные энергии не превышали 1 ТэВ . Так разгонять частицы мог американский ускоритель Тэватрон из штата Иллинойс. Энергия, достигнутая в коллайдере - далеко не самая Большая в мире. Так, энергия космических лучей, зафиксированных на Земле, превышает энергию частицы, разогнанной в коллайдере в миллиард раз! Так что, опасность большого адронного коллайдера минимальна. Вполне вероятно, что после того, как все ответы будут получены с помощью БАК, человечеству придется строить еще один коллайдер по-мощнее.

Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут . Обращайтесь за помощью, и пусть учеба приносит радость!