Мой забор - Выбор. Законы. Изгородь. Калитка. Монтаж. Ограждения. Каменный

Мой забор - Выбор. Законы. Изгородь. Калитка. Монтаж. Ограждения. Каменный

» » Кто такой норберт виннер и. Норберт винер биография. Практическое применение основных идей

Кто такой норберт виннер и. Норберт винер биография. Практическое применение основных идей

Анатолий Ушаков, д. т. н., проф. каф. систем управления и информатики, Университет «ИТМО» - [email protected]

Исторический опыт развития научной мысли показывает, что если ее носитель углубленно занят научной работой, то со временем он становится естественным системным аналитиком, что обычно приводит к прорывным научным результатам. Одним из примеров этого в XX в. явилась кибернетика, или наука об управлении и связи в машинах и живых организмах как основа материалистической кибернетической философии, созданной американским ученым с российскими корнями Норбертом Винером (Norbert Wiener).

Рис. 1. Норберт Винер у доски

По мнению биографов, Норберт Винер (рис. 1) является классическим примером вундеркинда. Он родился в г. Колумбия (шт. Миссури, США) 26 ноября 1894 г. Его родители эмигрировали в США в конце XIX в. Отец был уроженцем г. Белосток Гродненской губернии Российской империи, впоследствии ставшим профессором и заведующим кафедрой славянских языков и литературы старейшего в США Гарвардского университета.

Рис. 2. Норберт Винер в юности

Мальчик рос в многодетной семье, где отец сознательно готовил его к научной карьере. В результате Норберт уже в девять лет поступает в среднюю школу, а в 14 лет заканчивает колледж, затем продолжает образование в Гарвардском и Корнельском университетах и становится доктором философии по специальности «математическая логика». Самостоятельно овладевает пятью иностранными языками, включая китайский, и с головой погружается в мыслительную деятельность, отдаляясь от своих сверстников, что усугубляется острой близорукостью и природной неуклюжестью (рис. 2). Поэтому он воспринимался соучениками как неуравновешенный вундеркинд, что с годами не помешало ему стать доброжелательным и теплым в общении человеком.

Рис. 3. Винер в аудитории МТИ с макетом трицикла

Норберт продолжил свое образование в лучших европейских университетах Кембриджа и Геттингена, посещая лекции и семинары Бертрана Рассела (Bertrand Russell), Годфри Харди (Godfrey Hardy), Эдмунда Ландау (Edmund Landau) и Давида Гильберта (David Hilbert). С началом Первой мировой войны вернулся в США, работал в нескольких университетах, в редакциях газет и даже на военном заводе, был зачислен в армию, откуда по причине близорукости вскоре уволен. Не переставал заниматься наукой и, наконец, в 1919 г. был принят ассистентом кафедры математики (где позднее стал профессором) Массачусетского технологического института (МТИ), с которым и была связана вся его последующая жизнь (рис. 3). В своей книге «Я - математик» Винер писал, что обязан «…МТИ возможностью работать и размышлять обо всем, что меня интересует».

Основные работы Винера в двадцатые годы связаны со статистической механикой, векторными пространствами (пространства Банаха-Винера), дифференциальной геометрией, задачей о распределении простых чисел, теорией потенциала, гармоническим анализом с приложениями к задачам электротехники и квантовой теории. В это же время Норберт Винер определил так называемый винеровский процесс. Несколько позже он начал сотрудничать с одним из конструкторов аналоговых вычислительных машин Ванневаром Бушем (Vannevar Bush), что впоследствии очень ему помогло в работах над цифровыми машинами. Винер предложил идею нового гармонического анализатора, которую Буш впоследствии претворил в жизнь.

Рис. 4. Винер с женой в Индии (1955 г.)

В 1926 г. Винер женился на Маргарет Эндеман (Margaret Engemann) из немецкой семьи, и они отправились в свадебное путешествие по Европе, где Винер познакомился со многими видными европейскими математиками. Норберт Винер был убежден, что умственный труд «изнашивает человека до предела», поэтому должен чередоваться с физическим отдыхом. Он всегда пользовался любой возможностью совершать прогулки, плавал, играл в различные игры, с удовольствием общался с не математиками, занимался со своими двумя детьми (рис. 4).

С началом Великой депрессии в США Винер не прекращал научной работы, воспитывая учеников, среди которых самыми известными стали китаец Юк-Винг Ли (Yuk-Wing Lee) и японец Шикао Икехара (Shikao Ikehara), с которыми он впоследствии тесно сотрудничал (рис. 5).

Рис. 5. Винер со своим учеником Ю. В. Ли (слева) и коллегой по МТИС А. Г. Бозе (A. G. Bose)

Благодаря поддержке Г. Харди и эмигрировавшего из СССР видного математика Якова Давидовича Тамаркина работы Винера стали хорошо известны в Америке. Он был избран вице-президентом американского математического общества. В предвоенные годы особо значимыми оказались совместная работа с немецким математиком Эберхардом Хопфом (Eberhard Hopf) (уравнения Винера-Хопфа), важная для задач прогнозирования; статьи по обобщенному гармоническому анализу; участие в семинаре физиолога Артуро Розенблюта (Arturo Rosenblueth), который сыграл важную роль в формировании у Норберта Винера идей кибернетики, чтение лекций в пекинском университете Цинхуа.

Во время Второй мировой войны Норберт Винер работает в радиационной лаборатории МТИ, где создавались первые зенитные радиолокационные системы. Он исследует задачу движения самолета при зенитном обстреле и занимается разработкой проблем автоматического управления огнем зенитной артиллерии с учетом прогнозирования, что убедило Винера в важной роли обратной связи (которая играет существенную роль и в человеческом организме), а также в необходимости проектирования управляющей вычислительной машины. По его мнению, такие машины «должны состоять из электронных ламп, а не из зубчатых передач или электромеханических реле. Это необходимо, чтобы обеспечить достаточно быстрое действие». Кроме того, в них «должна использоваться более экономичная двоичная, а не десятичная система счисления». Машину, полагал Норберт Винер, нужно наделить определенной самостоятельностью для корректировки своих действий и самообучения, она должна стать «думающей».

В голове Винера уже давно зрела мысль написать книгу и рассказать в ней об общности законов, действующих в области автоматического регулирования, организации производства и в нервной системе человека. Первым наброском кибернетического метода стала статья 1943 г. , а с 1946 г. он стал вплотную заниматься книгой. Сразу же возникла трудность с заглавием, уж слишком необычно было содержание. Требовалось найти слово, связанное с управлением, регулированием. Пришло на ум греческое, похожее на «рулевой» корабля, что по-английски звучит как «кибернетика». Так Норберт Винер его и оставил.

Знаменитая книга Винера вышла в 1948 г. в нью-йоркском, а затем и во французском издательстве. В это время он уже страдал катарактой, помутнением хрусталика глаза, и плохо видел. Отсюда многочисленные ошибки и опечатки в тексте издания. С выходом в свет этой книги Норберт Винер, как принято говорить, «проснулся знаменитым». Книга сразу же была переведена на многие языки, что способствовало развертыванию интенсивных исследований по проблемам, сформулированным в этом труде.

На русском языке книга вышла в СССР только в 1958 г. и была встречена достаточно неоднозначно. Так, в книге профессор М. А. Быховский вспоминает, что в 1952 г. один из крупных советских ученых в области связи писал: «Винер и другие, исходя из внешней, поверхностной аналогии и спекулируя на нечеткости и двусмысленности некоторых терминов и понятий, пытаются перенести закономерности радиосвязи на биологические и психологические явления, говорят о «пропускной способности» человеческого мозга и т. д. Естественно, все эти попытки придать кибернетике наукообразный характер с помощью заимствованных из других областей терминов и понятий отнюдь не делают кибернетику наукой, она остается лжетеорией, созданной реакционерами от науки и философствующими невеждами, находящимися в плену идеализма и метафизики…».

В свою очередь в это же время один из советских авторов, написавший самые толстые книги по теории автоматического регулирования, в предисловии к своему очередному труду писал: «Попытка буржуазных ученых отождествить человека и машину ничего, кроме возмущения, не может вызвать в сердцах советских людей». Тем не менее основная часть настоящих советских ученых все понимала, продолжала вести научную работу, ожидая лучших времен. Они наступили после запуска первого советского спутника Земли в 1957 г. и последующего выхода русскоязычной версии книги Норберта Винера. В институтских аудиториях зазвучало слово «кибернетика», в учебных планах подготовки инженеров по специальностям, связанным с автоматикой и телемеханикой, появились дисциплины «Основы кибернетики», «Техническая кибернетика» и т. д. Были организованы факультеты и кафедры с «кибернетическими» названиями, Академия наук СССР стала издавать «Кибернетический сборник», при ее президиуме организован Совет по кибернетике, на телевидении проводились публичные дискуссии «Может ли машина думать?».

Рис. 6. Винер с А. А. Ляпуновым (слева) и Г. М. Франком в Москве (1960 г. )

Более того, вклад советских ученых А. Н. Колмогорова, В. А. Котельникова, В. И. Сифорова, Р. Л. Стратоновича, А. Я. Хинчина в развитие теории связи и стохастических процессов, а также А. А. Андронова, В. С. Кулебакина, А. А. Красовского, Н. Н. Красовского, А. М. Летова, А. И. Лурье, М. В. Меерова, Б. Н. Петрова, Е. П. Попова, А. А. Первозванского, Л. С. Понтрягина, А. А. Фельдбаума, Я. З. Цыпкина, В. А. Якубовича в развитие теории управления был замечен мировым научным сообществом, занятым проблемами кибернетики. Первый конгресс Международной федерации по автоматическому управлению (ИФАК) был проведен именно в Москве, в 1960 г., при этом ее президентом в то время был А. М. Летов. На этот конгресс был приглашен и Норберт Винер, которого с интересом встречали видные советские ученые и общественные деятели. Его приглашали с лекциями, докладами, публиковали статьи, отмечали его заслуги (рис. 6).
Оглядываясь на то уже далекое послевоенное время, невольно задаешься вопросом, какие же факторы определили тогда появление этой «революционной книги»?

Первым фактором было время. Закончилась кровопролитная Вторая мировая война. Ее участники залечивали нанесенные раны. Научная мысль входила в мирное созидательное русло. Ученые мира, занимавшиеся теорией и практикой управления и связи, были готовы к прорывному шагу.

Вторым фактором было появление в научном сообществе индивидуальности, обладавшей уникальными знаниями, необыкновенной работоспособностью, широтой научных взглядов и интересов, опытом приложения своих знаний в таких сферах, как теория стохастических процессов, теория прогнозирования, спектральный анализ, теория связи, теория вычислительных систем, теория и практика управления артиллерийской стрельбой по подвижным целям, нейрофизиология. Такой индивидуальностью был Норберт Винер.

Третьим фактором стало достигнутое к тому моменту состояние развития теории и практики автоматического управления. Основоположниками современной теории управления ученые мира и сам Норберт Винер считали английского физика, создателя классической электродинамики Д. К. Максвелла, российских ученых И. А. Вышнеградского и А. М. Ляпунова, теплотехника А. Б. Стодола (A. B. Stodola), математиков Э. Д. Рауса (E. J. Routh) и А. Гурвица (A. Hurwitz), специалистов по электрическим цепям Г. В. Боде (H. W. Bode) и Г. Т. Найквиста (H. T. Nyqvist). Мощным вкладом в инструментарий теории управления стала книга американских инженеров Х. М. Джеймса, Н. Б. Никольса и Р. С. Филлипса .

Четвертым фактором было достигнутое к тому моменту состояние развития стохастической теории связи, теории информации и теории передачи информации. Здесь большой вклад принадлежит самому Норберту Винеру и Клоду Шеннону (Claude Shannon), опубликовавшему в 1948 г. фундаментальную работу по теории информации и ее передаче .

Пятым фактором стало достаточно успешное решение к тому моменту проблемы оптимальной линейной фильтрации и стохастического прогнозирования, решенной независимо А. Н. Колмогоровым и Норбертом Винером. Говоря об этом системном факторе, следует затронуть этическую сторону научного процесса, положительно характеризующую создателя кибернетики. В своей книге Винер признал: «Когда я писал свою первую работу по теории прогнозирования, я не предполагал, что некоторые из основных математических идей этой статьи уже опубликованы до меня.<…> Колмогоров не только независимо разобрал все основные вопросы в этой области, но и был первым, опубликовавшим свои результаты».

Основная заслуга Норберта Винера, как автора знаменитой книги, состоит в том, что он связал информацию и процесс управления в единый содержательный модуль. Не может быть качественных результатов управления при использовании в его организации некачественной информации, это должен помнить каждый, кому выпала участь управлять машинами, живыми организмами или социальными структурами.

Каждая талантливая личность обычно талантлива многогранно. Это относится и к Норберту Винеру. Помимо научных работ, его перу принадлежат и художественные произведения. Список его беллетристики насчитывает около десятка трудов, и все они с добротным кибернетическим подтекстом, они требуют от читателя большого внимания при чтении.

В 1964 г. Норберта Винера удостоили высшей для ученых США правительственной награды «Национальной научной медали США». Тогдашний президент США Линдон Джонсон, вручая награду, сказал: «Ваш вклад в науку на удивление универсален, Ваш взгляд всегда был абсолютно оригинальным, Вы потрясающее воплощение симбиоза чистого математика и прикладного ученого». Однако Норберт Винер при этом громко сморкался и не услышал, что сказал президент в его адрес. В этом же году 18 марта Норберт Винер скончался, немного не дожив до своего семидесятилетия.

Имя Норберта Винера всегда будут помнить в научном сообществе, но он будем памятен и простым гражданам словом «кибернетика», потому что всякий раз, когда надо усилить характеристику какой-либо новой антропогенной разработки, ее авторы будут стремиться приписывать ей частичку «кибер».

Вконтакте

Литература

  1. Винер Н. Я - математик. М.: Наука.
  2. Rosenbluelh А., Wiener N., Bigelow J. Behavior, Purpose and Teleology //Philosophy of Science. Baltimore, 1943, vol. 10, No 1.
  3. Wiener N. Cybernetics: Or control and communication in the animal and the machine. Paris: Hermann & Cie & Camb. Mass.: MIT Press. 1948.
  4. Винер Н. Кибернетика, или управление и связь в животном и машине. М.: Советское радио. 1958.
  5. Быховский М. А. Пионеры информационного века. История развития связи. М.: Техносфера. 2006.
  6. Theory of Servomechansms /ed. H. M. James, N. B. Nichols, R. S. Phillips. New York, Toronto, London: McGrow-Hill. 1947.
  7. Shannon C. E. A Mathematical Theory of Communication // Bell System Technical Journal. 1948. vol. 27.

Классики менеджмента. Винер Норберт

Информация для публикации любезно предоставлен а изд-вом Питер

Винер Норберт (1894-1964), Wiener, Norbert

1. Введение
2. Основной вклад
3. Практическое применение основных идей

Краткие биографические сведения


в возрасте 10 лет написал свою первую работу, озаглавленную “Теория невежества”;
изучал математику и философию в Гарвардском университете;
в возрасте 19 лет получил докторскую степень по философии в Гарвардском университете;
в 1926 г. женился на Маргарет Энгельман;
стал первопроходцем в новой науке кибернетике;
большую часть жизни работал в Массачусетстком технологическом институте (США) в должности профессора математики;
написал 11 книг и свыше 200 статей для различных научных журналов;
получил пять научных наград (в том числе и Национальную премию в области науки, врученную ему президентом США) и три почетных докторских степени;
скончался 18 марта 1964 г. в Стокгольме в результате сердечного приступа.

Основные работы

(1948)
The Human Use of Human Beings: Cybernetics and Society (1950)
Ex-prodigy (1952)
I am a Mathematician (1956)
God and Golem, Inc. (1964)
Invention: The Care and Feeding of Ideas (1993)

Резюме

Норберт Винер был отцом кибернетики, новой науки, возникшей на стыке нескольких научных дисциплин вскоре после окончания Второй мировой войны. Кибернетика установила связи между наукой периода военных действий и послевоенной социальной наукой посредством выработки некаузального и экологического вИдения как физических, так и биологических систем. В своих посвященных кибернетике работах Н. Винер продемонстрировал наличие инвариант в механизмах управления и передачи информации живых существ и машин. Кибернетические принципы обеспечили, с одной стороны, основы для создания многих технических устройств, например, радаров, информационных сетей, компьютеров и искусственных конечностей, а с другой - помогли разработать фундаментальные подходы к изучению таких феноменов живого мира как обучение, память и интеллект. Кибернетические идеи нашли применение и получили дальнейшее развитие в управленческих науках, а также в более широком социологическом контексте.

1. Введение

Норберт Винеробладал необыкновенными математическими способностями и уже в возрасте 19 лет сумел получить степень доктора философии в Гарвардском университете (Harvard University ). Основная часть его научной карьеры была связана с работой в Массачусетстком технологическом институте (МТИ), где он, занимая должность профессора математики, написал 11 книг и свыше 200 статей для различных научных журналов. С первых ранних, посвященных созданию математической теории броуновского движения и математических моделей для квантовой механики работ (в 1920-е гг. - наиболее важные проблемы теоретической физики), Н. Винер проявил себя как замечательный математик, сумев дополнить естественнонаучное содержание работ оригинальной личной философией. Для Н. Винера математические теории представляли собой специальные условия, в которых конкретизировались общие философские идеи. Его философский подход подразумевал единый взгляд на мир и в том числе на существующих в нем людей, мир, в котором все является взаимосвязанным, но в котором наиболее общие принципы обладают элементами неопределенности (Heims , 1980: 140, 156). Такое холистическое (или экологическое) видение природы, предложенное ученым, работавшим в первой половине XX в., намного опередило свое время.

2. Основной вклад

В период второй мировой войны Управление научно-исследовательских работ США отдавало приоритет работе над долгосрочным проектом создания атомной бомбы, а также решению более срочной задачи поиска способов уничтожения немецких бомбардировщиков. В то время как основные работы по созданию атомной бомбы осуществлялись в Лос-Аламосе, исследования способов обнаружения, сопровождения и уничтожения самолетов велись, главным образом, в MIT , где Н. Винер отвечал за разработку необходимого для решения этой задачи математического аппарата. В сотрудничестве с молодым инженером Джулианом Бигелоу Н. Винер разработал достаточно общую математическую теорию предсказания наилучших вариантов будущего на основе неполной информации о прошлом. Эта теория способствовала революционному перевороту в практике создания средств связи и заложила основы для современной статистической теории связи и информации (Heims , 1980: 184). В то время (1940-е гг.) эта теория немедленно привела к значительному улучшению методов слежения за самолетами с помощью радаров и стала успешно применяться при создании устройств фильтрации шумов для радиоприемников, телефонов и многих других приборов общего назначения (Wiener , 1993). Эта работа проводилась Н. Винером примерно в то же время, когда независимо от него Клод Шеннон создавал свою “математическую теорию передачи информации” (Shannon and Weaver , 1949).
Один из наиболее интересных аспектов проблемы противовоздушной обороны был связан с созданием контура обратной связи: информация с экрана радара использовалась для расчета поправок, необходимых при управлении оружием поражения для повышения точности наведения, а затем эффективность этих корректировок отслеживалась и отображалась с помощью радара, далее эта новая информация вновь использовалась для уточнения наведения оружия на цель и т.д. Если расчеты в данном процессе осуществлялись автоматически, то такая система работала как самоуправляемая; если же расчеты не были автоматизированы, то вся система в целом, включая действующих в ней людей, также была самоуправляемой. Важнейшая догадка Н. Винера заключалась именно в том, что сходные механизмы обратной связи используются во всех видах целенаправленной деятельности, например, в случае, когда мы берем со стола обыкновенный карандаш. Здесь информация, воспринимаемая главным образом посредством наблюдения, непрерывно используется для управления нашими мускулами руки вплоть до момента успешного решения поставленной задачи. Н.Винер обсуждал свои идеи в этой области с мексиканским физиологом Артуро Розенблюэтом, предположившим, что некоторые обычные расстройства нервной системы, известные под названием атаксии (нарушения координации движений), могут быть объяснены с точки зрения неточности работы системы обратной связи. Если вы предложите сигарету человеку, страдающему атаксией, то он протянет руку дальше, чем требуется для того, чтобы взять ее со стола. Далее он сделает бесполезные движения в противоположном направлении, а затем вновь в первоначальном, так что его действия будут напоминать не приводящей к поставленной цели колебательный процесс.
Мысль о том, что с помощью математических формул могут быть найдены некие параллели между механическими устройствами и живыми организмами, получила поддержку у многих представителей самых разных наук. Восьмого марта 1946 г. в одном из нью-йоркских отелей для обсуждения подобных идей собрались двадцать один видный ученый. Эта встреча оказалась первой из серии научных конференций, организованных при спонсорской поддержке Macy Foundation - в ходе которых были сформулированы основные принципы новой науки кибернетики. Группа ученых, регулярно участвовавшая в этих встречах в 1946-1953 гг. получила название “кибернетической группы” (Heims , 1991). В нее входили такие ученые как выдающийся математик Джон фон Нейман, психоневролог Уоррен Маккуллах, специалист в области общественных наук Грегори Бейтсон, а также Артуро Розенблюэт и сам Норберт Винер.

В своей классической книге Cybernetics: or Control and Communication in the Animal and the Machine (“Кибернетика или контроль и коммуникации у животных и машин”) (1948) Н. Винер обозначил и описал основы кибернетики - одной из самых молодых научных дисциплин XX в. Использованное Н. Винером название науки восходит к древним грекам и означает в буквальном смысле “искусство управления”. При его выборе Н. Винер хотел подчеркнуть признание того факта, что первой посвященной действию механизма обратной связи значительной работой была статья о регуляторах Кларка Максвелла (1868) и что термин “регулятор” (governor ) происходит от искаженного латинского слова gubernatur . Платон использовал этот термин для обозначения науки об управлении кораблями в то время как в XIX в. французский ученый Андре Ампер заимствовал его для определения науки об управлении.
Демонстрируя факт наличия основополагающего сходства между используемыми в различных науках механизмами управления, кибернетика смогла устранить давнее философское противоречие между витализмом и механизмом, согласно которому биологические и механические системы имели принципиально различную природу. Фактически кибернетика, в соответствии с философской позицией Н. Винера, допускала гораздо более широкую классификацию систем, и таким образом проявляла свой междисциплинарный характер (Wiener , 1993: 84). Полезным критерием для проведения этой классификации является понятие комплексности, в соответствии с которым основной интерес кибернетики заключается в изучении комплексных (то есть настолько сложных, что они не могут быть описаны в подробном и детальном виде) и стохастических (в противоположность детерминированным) систем (Beer , 1959: 18). Типичными примерами таких систем являются экономика, человеческий мозг и коммерческая компания.
Для изучения механизма управления и передачи информации в подобных системах Н. Винер и его коллеги разработали понятия обратной связи, гомеостазиса и “черного ящика”. Хотя механизм обратной связи был рассмотрен нами ранее, полезно проанализировать его основные характеристики более подробно. Каждый контур обратной связи подразумевает использование входящей информации (например, измерений температуры) и выхода (например, данных о работе нагревателя); кроме того - и это имеет важнейшее значение - информация на входе испытывает на себе воздействие выходе, например, мощность нагревателя будет определять показания, снимаемые с термометра, которые, в свою очередь, будут влиять на сигнал о включении или об отключении нагревателя. Таким образом, происходит непрерывный контроль за расхождением между желаемой и реальной ситуацией. Если управляющий механизм действует в направлении сокращения этого расхождения, то такая обратная связь носит название отрицательной (как в случае термостата); если же обратная связь способствует увеличению расхождения, то она называется положительной (как в случае механического тормоза, который фиксирует начальные движения руки водителя и затем усиливает их до тех пор, пока не сможет остановить движущийся автомобиль).

В своей книге Cybernetics (“Кибернетика”) (1948) Н. Винер показал, что механизмы обратной связи присутствуют во многих имеющих принципиально различную природу системах - от механических до экономических и от социологических до биологических. Особый, имеющий важнейшее значение для поддержания жизни тип обратной связи присутствует в так называемом явлении гомеостаза. Классическим биологическим примером является гомеостаз температуры крови, позволяющий сохранять температуру тела практически неизменной, несмотря на перемещение организма из холодного помещения в теплое. Таким образом гомеостатом называется регулирующий прибор, для поддержания некоторых переменных в заданных пределах. Так, типичным примером гомеостата является созданный Дж. Уаттом регулятор давления пара в паровозе, предназначенный для управления его скоростью при различных значения нагрузки. Здесь крайне важно понять, что выход регулируемой переменной за желаемые пределы (когда скорость паровоза оказывается слишком быстрой или слишком медленной) сам по себе выполняет роль обратной связи (когда происходит соответствующее закрытие или открытие клапанов в регуляторе Уатта). Другими словами, до тех пор, пока функционирует сам механизм, его обратная связь также будет работать исправно. Этот вывод имеет огромное значение, поскольку он подразумевает, что обратная связь регулятора всегда будет гарантированно компенсировать не только данный тип возмущений, но и возмущения любых типов (Beer , 1959: 29). Это особое свойство систем управления обычно называется ультрастабильностью (Ashby , 1956).
Теперь нам должно быть ясно, что понятие “управления” в кибернетике не сводится к наивному представлении о процессе принуждения, а подразумевает осуществление саморегулирования.
Другим важным, получившим распространение во многих других науках понятием кибернетики является “черный ящик”. Кибернетика, как уже отмечалось выше, занимается, главным образом, исследованием механизмов управления и передачи информации в сложных стохастических системах. Для изучения процесса управления кибернетики используют понятия обратной связи и гомеостаза; для анализа вероятностных характеристик систем они применяют статистическую теорию информации; наконец, исследование комплексности систем они осуществляют с помощью понятия черного ящика. Представляя систему в качестве черного ящика, кибернетики по умолчанию соглашаются с когнитивными ограничениями своего понимания огромного числа возможных состояний, доступных сложной системе в любой момент времени. Однако при этом они признают возможности манипулирования некоторыми входными сигналами и наблюдения некоторых результатов работы системы на выходе. Если выходные сигналы непрерывно сравниваются с конкретными желаемыми величинами, то некоторые реакции системы могут быть определены с точки зрения их влияния на входные сигналы черного ящика с тем, чтобы сохрани·ь систему “в управляемом состоянии”.
При моделировании системы в виде черного ящика идентифицируются четыре набора переменных: набор возможных состояний системы (S ); набор возмущений, способных повлиять на текущее ее состояние (Р ); набор реакций на эти возмущения (R ); набор целей, определяющих приемлемые состояния в соответствии с установленными критериями (Т ). Считается, что система находится в “управляемом состоянии” если в любой момент времени ее состояние соответствует состоянию из набора Т . С помощью этой модели устанавливается чрезвычайно важный кибернетический принцип: если система находится в управляемом состоянии, то необходимо, чтобы для любого возмущения, стремящегося вывести систему из допустимых состояний, существовала такая ее реакция, которая после своего осуществления приводила бы систему в одно из состояний из совокупности Т . Данный принцип был разработан английским кибернетиком Россом Эшби и получил название “закона необходимого многообразия”, обычно формулируемого следующим образом: “только многообразие способно поглотить многообразие” (Ashby , 1956).
Н. Винер получил опыт работы с вычислительными устройствами в самом начале своей научной карьеры (Wiener , 1993). Еще в 1920-х гг., задолго до создания первых компьютеров, он разработал метод для вычисления определенной группы интегралов с помощью прохождения луча через специальные фильтры и последующего замера интенсивности принимаемого светового потока. Это новое устройство являлось, по сути, аналоговым компьютером, и получило название “интеграфа Винера”. Примерно двадцать лет спустя, в 1940 г., Н. Винер отправил американскому правительству докладную записку, в которой он описывал пять характеристик, которыми должен был обладать будущий компьютер: он должен был быть цифровым, а не аналоговым; использовать двоичную систему счисления; создаваться на базе электронных элементов; его логическая схема должна была соответствовать принципам, на которых была создана машина Тьюринга; в компьютере для хранения информации следовало использовать магнитную ленту. Хотя этот меморандум в течение многих лет игнорировался правительственными чиновниками, некоторые его идеи, выдвинутые независимо от Н. Винера другими учеными, легли в основу создания современных быстродействующих компьютеров.

3. Практическое применение основных идей

Многие ассоциируемые в настоящее время с созданием кибернетики ранние исследования были посвящены проектированию и созданию различных устройств. Электронные модели черепах, созданные британским невропатологом Греем Уолтером, наглядно демонстрировали, что объединение нескольких простых механизмов с использованием правильно подобранной обратной связи позволяет реализовать почти такие же сложные модели поведения, как и у живых систем. Примерно в то же время английский кибернетик Гордон Паск разработал обучающую машину, положив начало процессу, приведшему в итоге к написанию и публикации его знаменитой Conversational Theory (“Конверсационной (разговорной) теории”) (1975). Машина Г. Паска отображала информацию, которая должна была быть усвоена, получала от обучаемого человека ответ на заданный вопрос и использовала его в качестве сигнала обратной связи для совершенствования процесса обучения. Таким образом, эта непрерывно приспосабливающаяся к возможностям ученика машина могла быть использована для обучения. Сам Н. Винер в 1950-х и начале 1960-х гг. уделял много внимания созданию устройств для замены ампутированных конечностей, стремясь также воспроизвести их тактильную чувствительность. Его совместная работа с группой хирургов-ортопедов, неврологов и инженеров (хотя и оказавшаяся в те годы безуспешной) наметила пути для последующего создания протеза, получившего название Бостонской руки.
Эта работа с различными устройствами имела двойную цель: (1) продемонстрировать возможность практического применения кибернетических идей и (2) содействовать изучению комплексных подобных нервной системе человека систем, а также лучшему пониманию таких свойств живых существ как обучаемость, память и интеллект. В качестве примера исследования интеллекта Н. Винер во втором издании своей книги о кибернетике (Wiener , 1961) подробно объяснял, как можно создать машину, способную играть в шахматы на приемлемо высоком уровне. В настоящее же время почти любой ПК в состоянии победить практически любого шахматиста-любителя. К сожалению, вследствие, в том числе и первоначальных попыток практического применения кибернетических идей, вся новая научная дисциплина в целом стала ассоциироваться с реальным оборудованием, в особенности с компьютерами, несмотря на то, что ее принципы по-прежнему использовались в других дисциплинах.
В области теории менеджмента наиболее значительная развитие идей Н. Винера было осуществлено Стаффордом Биром, который моделируя компанию в виде совокупности взаимосвязанных гомеостатов и использую закон Эшби о требуемом многообразии, создал модель жизнеспособной системы - МЖС (Beer , 1979, 1981, 1985). МЖС, ставшая важным достижением направления кибернетики, получившего название управленческой кибернетики, оказалась полезным инструментом диагностирования и даже проектирования комплексных систем - от малых фирм до крупных международных компаний и от местных органов самоуправления до экономики государства в целом (Espejo and Harnden , 1989).
В конце 1970-х гг. некоторые специалисты в области социальных наук попытались развить и обогатить кибернетику за счет ее объединения с социологией и создания так называемой “социокибернетики”. Однако на этом пути они столкнулись с некоторыми проблемами, решение которых оказалось для них, по-видимому, чрезвычайно сложным (Geyer and Zouwen , 1986). Лишь последующие работы в области исследования биологических аспектов процесса познания (см. например, Maturana and Varela , 1987; Foerster , 1984) заложили основы для успешного развития социальной кибернетики. Эта наука, известная под названием “кибернетики второго порядка” (Foerster , 1979) представляет собой пример необъективистского подхода к научному исследованию, подчеркивающего роль наблюдателя в социальных системах.
Таким образом, кибернетика второго порядка, подчеркивая значение независимости индивидов и изучая непрерывные процессы, с помощью которых они создают общую реальность, указывает на возможность новой парадигмы в социальных исследованиях, которая могла бы обеспечить - обращаясь к названию одной из книг Н. Винера - более “гуманное использование человеческих существ”.

Норберт Винер родился 26 ноября 1894 года в городе Колумбия штата Миссури, в еврейской семье. В девять лет он поступил в среднюю школу, в которой начинали учиться дети 15-16 лет, закончив предварительно восьмилетку. Среднюю школу он окончил, когда ему исполнилось одиннадцать. Сразу же поступил в высшее учебное заведение Тафтс-колледж. После окончания его, в возрасте четырнадцати лет, получил степень бакалавра искусств. Затем учился в Гарвардском и Корнельском университетах, в 17 лет в Гарварде стал магистром искусств, в 18 - доктором философии по специальности "математическая логика".

Гарвардский университет выделил Винеру стипендию для учебы в Кембриджском (Англия) и Геттингенском (Германия) университетах.

В 1915/1916 учебном году Винер в должности ассистента преподавал математику в Гарвардском университете.

Следующий учебный год Винер провел по найму в университете штата Мэн. После вступления США в войну Винер работал на заводе "Дженерал-электрик", откуда перешел в редакцию Американской энциклопедии в Олбани. В 1919 году он поступил на должность ассистента кафедры математики Массачусетсского технологического института (МТИ).

В 1920-1925 годах он решает физические и технические задачи с помощью абстрактной математики и находит новые закономерности в теории броуновского движения, теории потенциала, гармоническом анализе.

Тогда же Винер познакомился с одним из конструкторов вычислительных машин - В. Бушем и высказал пришедшую ему однажды в голову идею нового гармонического анализатора. В 1926 году в Массачусетсский технологический институт приехал работать Д.Я. Стройх. Винер вместе с ним занялся применением идей дифференциальной геометрии к дифференциальным уравнениям, в том числе к уравнению Шредингера.

В 1929 году в шведском журнале "Акта математика" и американском "Анналы математики" вышли две большие итоговые статьи Винера по обобщенному гармоническому анализу. С 1932 года Винер - профессор МТИ.

Существовавшие в ту пору вычислительные машины необходимым быстродействием не обладали. Это заставило Винера сформулировать ряд требований к таким машинам. Машина, полагал Винер, должна сама корректировать свои действия, в ней необходимо выработать способность к самообучению. Для этого ее нужно снабдить блоком памяти, где откладывались бы управляющие сигналы, а также те сведения, которые машина получит в процессе работы.

Лучшие дня

В 1943 году вышла статья Винера, Розенблюта, Байглоу "Поведение, целенаправленность и телеология", представляющая собой набросок кибернетического метода.

В голове Винера уже давно зрела мысль написать книгу и рассказать в ней об общности законов, действующих в области автоматического регулирования, организации производства и в нервной системе человека. Он сумел уговорить парижского издателя Феймана издать эту будущую книгу.

Сразу же возникла трудность с заглавием, уж слишком необычно было содержание. Требовалось найти слово, связанное с управлением, регулированием. Пришло на ум греческое, похожее на "рулевой", что по-английски звучит как "кибернетика". Так Винер его и оставил.

Книга вышла в 1948 году в нью-йоркском издательстве "Джон Уили энд Санз" и парижском "Херманн эт Ци". Говоря об управлении и связи в живых организмах и машинах, он видел главное не просто в словах "управление" и "связь", а в их сочетании. Кибернетика - наука об информационном управлении, и Винера с полным правом можно считать творцом этой науки.

Все годы после выхода "Кибернетики" Винер пропагандировал ее идеи. В 1950 году вышло продолжение - "Человеческое использование человеческих существ", в 1958 году - "Нелинейные задачи в теории случайных процессов", в 1961 году - второе издание "Кибернетики", в 1963 году - своеобразное кибернетическое сочинение "Акционерное общество Бог и Голем".


Мальчишкой я выцыганил у кого-то из многомудрых маминых знакомых тёмно-бордовую книжку, на обложке которой красовалось загадочное слово "Кибернетика". Книжка поселилась на моих личных полках, которым принадлежало всё свободное пространство десятиметровой комнаты, и во многом определила дальнейшую судьбу своего обладателя. Произошло это отнюдь не вследствие созвучности идей Винера моему придуманному миру. От первой до последней страницы я прочитал "Кибернетику или управление и связь в животном и машине" только когда готовил вступительную часть к своему диплому, название которого воспроизвести возьмусь вряд ли (что-то там про использование теории распознавания образов при построении математической модели рентгенорадиометрического экспресс-анализа руд цветных металлов). Так что же заставило меня с трогательной нежностью относиться к этой книге? Как ни забавно, причиной тому была история другой замечательной книги. Мой папа (утащивший после развода с мамой всю любовно собранную им библиотеку) считал своим долгом пристально следить за моим умственным развитием. В моём реестре значились Лем, Стругацкие, Шекли, Брэдбери и иже с ними. Но вот однажды он торжественно вручил мне книжку некоего Робина Джорджа Коллингвуда, английского философа и историка культуры. Я привычно открыл книгу посредине и: заскучал. Этот дядя был мне не по зубам. Но поскольку я уже лежал на диване с книгой в руках (и не желал вставать), то решил хотя бы одолеть предисловие, собственноручно написанное автором. История, изложенная там, поразила настолько, что мне вдруг мучительно захотелось хотя бы немного стать похожим на маленького Робина. А было так: строгий отец велел слугам запереть провинившегося будущего лорда Коллингвуда в библиотеке, проказник воспользовался ситуацией и вскарабкался по лестнице на самую верхнюю книжную полку, скинув с неё целый ворох бесценных фолиантов. Ну кто из нас в детстве не прятался в шкафу? Устраиваясь поудобнее на книжной полке, мальчик собрался положить под голову толстенный том в кожаном переплёте. И тут взгляд его упал на заглавие. Прочитать его он не смог, буквы были незнакомыми. Перелистав книгу, Робин убедился, что текст напечатан на том же неведомом языке. Книга манила и, уложив её себе под голову, мальчик уснул с мыслью, что посвятит изучению таинственных текстов всю жизнь. Так оно и вышло. Та книга была "Диалогами" Платона. Моя - "Кибернетикой" Винера. Я ещё не читал её. Но я о ней уже думал. Странные ощущения. Странные книги.

Наш герой, Норберт Винер, завершил свой первый фундаментальный труд (вышеупомянутую "Кибернетику") в возрасте 54 лет. Подобная выдержка замечательным образом характеризует вечно сомневающегося во всём большого учёного. Думаю, читатель сумеет по достоинству оценить степень "выстраданности" материалов, преподнесённых в самой известной книге Винера, если вспомнит первые главы биографии "отца кибернетики".

Родители Норберта были выходцами из небольшого городка Белосток в Белоруссии. Слыли они людьми солидными и разумными, обладали достаточно высоким социальным статусом и немалым достатком. Семейство Винеров не стало дожидаться ни погромов, ни Первой Мировой, ни братоубийственной Гражданской. На исходе девятнадцатого столетия они покинули всё ещё внешне спокойную и вполне благополучную Россию, и перебрались в Штаты. Глава семейства, Лео Винер, вскоре устроился профессором на кафедре славянских языков и литературы в Гарвардском университете. Позже он прославится как ведущий специалист по вопросам языковой интерференции, и его внимание переключится на африканцев и индейцев, но в первые годы эмиграции среди высоколобых коллег он стал широко известен как переводчик на английский бессмертного разоблачительного труда Александра Радищева "Путешествие из Петербурга в Москву" и отец очаровательного карапуза.

Ребёнок, названный на американский манер Норбертом, появился на свет 26 ноября 1894 года. Сей факт был зафиксирован федеральными властями в книге приходов и расходов человеческих жизней округа Колумбия штата Миссури. Я не знаю был ли он обрезан, посему доверяю вам судить, имеет ли Винер-младший право на главу в книге "Знаменитые евреи". (Впрочем, бывший майор советских танковых войск, Паша Андреев, ради хохмы обрезанный во время боевых действий в Афганистане своим другом, военным хирургом Двужильным, уверял меня, что "все амери

канцы своих детей обрезают ещё в детстве").

Лео с первых дней начал нервно суетиться вокруг сына, придирчиво наблюдая за его рефлексами, в естественном для всякого отца стремлении обнаружить явные признаки гениальности у своего чада. Практикующий профессор Винер обрушился на невинного ребёнка со всей непоколебимостью новейших учебно-воспитательных методик. Мальчик учился говорить и думать одновременно на нескольких языках, а читать начал едва ли не раньше, чем освоил нелёгкое искусство перемещения на своих двоих. В 4 года он уже был допущен к родительской библиотеке, а в 7 лет написал свой первый научный трактат по дарвинизму. Таким образом, напоминаю, между первой научной работой и первым публичным трудом случились почти полвека тягостных раздумий. Однако интересы юного гения не ограничивались вопросами биологии и происхождения рода человеческого. Он с одинаковым увлечением цитировал терцины Данте и лженаучные монологи сказочного Паганеля. Ему грезились глубины ада и населённые неведомыми существами таинственные земли в возрасте, когда нормальным детям снятся сладкие розовые петушки и первые буквы алфавита. Домашнее воспитание не прошло даром.

Норберт никогда по-настоящему не учился в средней школе. Зато 11 лет от роду он поступил в престижный Тафт-колледж, который закончил с отличием уже через три года. Половозрелые студенты посматривали на 14-летнего бакалавра с недоумением, граничащим с желанием немедленно дать по шее. Но юркий пухлый очкарик привычно вжимал непропорционально большую голову в узкие плечи и почти всегда умудрялся ускользнуть от своих недоброжелателей. Юному Норберту доставалось порой и в словесных перепалках. Гордую еврейскую фамилию Винер (по-немецки wiener - венец) не так-то просто носить по коридорам американского учебного заведения в тинейджерском возрасте. Прямолинейные янки во все времена не очень разбирались в тонких лингвистических нюансах, поэтому словом "wiener" они для краткости называли немецкие копчёные колбаски "wienerwurst", а впоследствии придали этому слову и вовсе неприличное значение. (Если вы когда-нибудь слышали от американца детсадовского возраста жалостливое "Mammy, my wee-wee want pee-pee", то поймёте, о каком значении я веду речь.) Впрочем, Норберту (не смотря на заслуги папаши именно на ниве словесности) не было дела до языковых тонкостей. Он тихо бесился и обещался со временем отыграться на потомках злокозненных обидчиков.

Так, в забавах, незаметно пробегали дни, и к 18 годам Норберт Винер уже числился доктором философии по специальности "математическая логика" в Корнельском и Гарвардском университетах. В девятнадцатилетнем возрасте доктор Винер был приглашён на кафедру математики Массачусетского Технологического Института, "где он и прослужил до последних дней своей малоприметной жизни". Так или примерно так можно было бы закончить биографическую статью об отце современной кибернетики. И всё сказанное было бы правдой, кабы не одна закавыка: если математику Винеру и удалось спрятаться от человечества, то спрятался он в тени собственной славы.

Отец развил в Норберте болезненную страсть к ученью. "Когда я переставал учиться хотя бы на минуту, мне казалось, что я перестаю дышать. Это было сродни тупому инстинкту", - вспоминал Винер уже в старшем возрасте. Вскоре ассистенту профессора Н.Винеру удалось убедить кафедральное начальство направить его в Европу для "повышения квалификации". И снова он учился. В Кембридже - у великого Рассела и чудаковатого Харди, в Геттингене - у дотошного Гильберта. Сказать "и был любимым учеником" мало, говорить же о соучастии в создании современной математики и банально, и неоправданно в то же время. Норберт взрослел, впервые в жизни он обрёл самостоятельность. Оказавшись недосягаемым для заботливой родительской длани, ему захотелось в одночасье наверстать упущенное за годы "одарённого детства" (его собственное выражение). Нет, он не пустился во все тяжкие. Отнюдь. Наш юноша был слишком стеснителен и неуклюж для романтических приключений. Винер позволил себе гораздо больший грех. Он усомнился в своём математическом призвании. Будущему "отцу кибернетики" пришлось попробовать свои силы в роли журналиста околоуниверситетской газетки, испытать себя на педагогическом поприще, прослужить пару месяцев инженером на заводе. При этом он параллельно посещал литературные кружки (где в те

годы крутилось немало выходцев из России). Впрочем, довольно скоро Норберт разочаровался в попытках изменить судьбу и вернулся в Штаты, в стены родной кафедры. В Европе шла война, это мешало сосредоточиться.

Как-то Норберт Винер столкнулся с одним из своих студентов около университетского кампуса. Они перекинулись парой приветственных фраз и вскоре увлеклись обсуждением насущных математических проблем. По окончании беседы Винер виновато взглянул на студента и спросил: "Простите, а с какой стороны я пришёл сюда?" Студент почтительно указал направление. "Ага. Значит, я ещё не ел", - с грустью констатировал профессор. Не совсем анекдот.

Там, в МТИ, Винеру удалось "плодотворно переждать смутное время" между Первой и Второй Мировыми войнами. Пока вся Америка то трепетала в голодном отчаянии, то утешалась великодержавной эйфорией, "чистый учёный" делал своё дело. Он успел стать профессором Гарвардского, Корнельского, Колумбийского, Брауновского, Геттингенского и прочих университетов, получил в собственное безраздельное владение кафедру в Массачусетском институте, написал сотни статей по теории вероятностей и статистике, по рядам и интегралам Фурье, по теории потенциала и теории чисел, по обобщённому гармоническому анализу и прочее, и прочее. Это были счастливейшие годы в его жизни. Он был молод, полон творческих планов, талантлив и совершенно никому не известен. Его труды носили чисто академический характер и могли изумлять коллег, но ни коим образом не тревожили прочую часть человечества.

Всё изменилось с приходом Гитлера к власти в Германии. Винер не был таким уж отшельником, социальные проблемы волновали его не только с точки зрения математического моделирования. Волны еврейских эмигрантов, хлынувших в 30-е годы через океан в Новый Свет, принесли с собой затхлый запах смерти. Америка втягивалась в новую войну, на которую профессор пожелал быть призванным. Нет, он не ходил в атаки и даже не управлял радаром (как Дуг Энгельбарт), ему не было присвоено никакого армейского звания. Норберт Винер не покидал пределов собственной кафедры. Просто сместились акценты. Теперь основное внимание учёного было уделено построению детерминированных стохастических моделей по организации и управлению американскими силами противовоздушной обороны. Винер первым предложил отказаться от практики ведения огня по отдельным целям (что имело крайне низкий КПД в условиях реального боя батареи зенитных установок против эскадрильи вражеских самолётов). Он разработал новую действенную вероятностную модель управления силами ПВО. Задача была столь же сложна, сколь и интересна. И совершенно невыполнима, на первый взгляд, без применения сегодняшней компьютерной техники. Действительно, какая песня без баяна, какая ракета без самонаведения?

Но война закончилась. И военный термин "самонаведение" уступил дорогу мирному слову "самообучение". С привычным азартом Винер делился теперь с коллегами наблюдениями из жизни микки маусов. История эта сегодня стала хрестоматийной и называется она так: "Мышь в лабиринте". Действительно, если грызун (привычный к запутанным норам) попадает впервые в новый лабиринт, то ведёт себя следующим образом: тыркается во все дыры, запоминая неверные ходы и не повторяя их. Так, рано или поздно, он добирается до цели (кусочек сыра, вожделенная самка, дверь в иной мир и т.п.). Если же его выпустить в этот лабиринт ещё раз, он уже безошибочно пройдёт весь путь из пункта А в пункт В. Вывод? Мышь в лабиринте - пример самообучающейся системы. Оставалось создать (или хотя бы в деталях описать) эдакую искусственную мышь. За что Винер и взялся с присущим ему пылом.

Свои лекции профессор Норберт Винер обычно начинал с того, что снимал с носа очки, доставал из кармана носовой платок и шумно сморкался, потом пару минут обшаривал пространство в поисках мела, находил его, отворачивался спиной к аудитории и без предисловий записывал нечто на доске. Потом бормотал что-то вроде "неверно, всё неверно", стирал и записывал снова. Всё это могло повторяться вплоть до окончания лекции. За пару минут до звонка, Винер произносил: "Вот! Тут мы на сегодня могли бы поставить точку!" Доставал платок, сморкался и, не глядя на аудиторию, удалялся из лекционного зала. Из воспоминаний известного физика С.К.Чена.

"Кибернетика" Винера увидела свет в 1948 году. Она практически сразу была

признана мировой научной общественностью "трудом из ряда вон:", переведена на десятки языков, однако понимание величия этого творения пришло много позже. Читать "Кибернетику" трудно (впрочем, с этого я начал данный текст). Читателю нужно неплохо разбираться и в математической логике, и в нейрофизиологии, и в статистике, и в инженерии, и в философии, чтобы оценить её по достоинству. Фундаментальный труд? Ну и что? Я знаю очень многих хороших программистов, которые даже не держали "Кибернетику" в руках. Точнее так, я знаю очень немногих программистов, которые её в руках держали. Читали, так вообще единицы! Что такое "кибернетика"? Платон (казалось бы, случайно упомянутый выше) утверждал, что словом, похожим на это, финикийцы обозначали сложнейшую науку своего времени, науку судовождения. Если бы Платон и Винер могли встретиться не только на книжной полке, древний грек изменил бы собственное мнение (истина дороже!). По Винеру, кибернетика - это наука об управлении, связях и обработке информации в технике, живых организмах и человеческом обществе. Наука, позволяющая творить искусственный интеллект. Наука, позволяющая управлять искусственным интеллектом.

В спецхране можно было получить секретный отчёт Винера Правительству США по теории экстраполяции случайных последовательностей и процессов. Отчёт был издан в ярко-жёлтой обложке и среди математиков, имевших доступ к этому материалу и испытывавших немалые трудности при чтении этого отчета, получил название "жёлтой опасности". Из воспоминаний профессора МГУ В.Тихомирова.

Винер полагал очевидным, что многие концептуальные схемы, определяющие поведение живых организмов при решении конкретных задач, практически идентичны схемам, характеризующим процессы управления в сложных технических системах. Более того, он убедительно доказывал, что социальные модели управления и модели управления в экономике могут быть проанализированы на основе тех же общих положений, которые разработаны в области управления системами, созданными людьми. Эти идеи получили развитие в очередном "популярно-математическом" труде, известном в русском переводе как "Кибернетика и общество". И хотя Винер совершенно искренне считал социальные науки "наихудшей областью для подтверждения законов кибернетики", творцы коммунистической идеи надолго заперли его труды в спецхран, опасаясь именно "социально-политических последствий" проведения его идей в жизнь. Ситуация несколько улучшилась в 60-е годы, когда, сидя в тени транспаранта "Кибернетику - на службу коммунизму!", просвещённый гомо-советикус, поражаясь собственной безграничной смелости, зачитывался "Понедельником" Стругацких. Что же до прочего мира, то Винера почитали как великого современника, осыпали его наградами, всячески требовали от него соучастия в развитии кибернетических идей. Совместно с Клодом Шенноном Винер заложил основы современной теории информации (кстати, слово "бит" - тоже их придумка). В лучах славы "отца кибернетики" могли греться целые академии. И тут, как показалось многим, "старик спятил". Авторитетнейший Винер публикует подряд два произведения, роман "Искуситель" и философский трактат "Творец и Голем", в которых недвусмысленно даёт понять человечеству, что не только напуган разбуженной им стихией "нечеловеческой мысли", но и готов предложить свои услуги по изничтожению дьявольского творения.

За пару месяцев до смерти Норберт Винер был удостоен Золотой Медали Учёного, высшей награды для человека науки в Америке. На торжественном собрании, посвящённом этому событию, президент Джонсон произнёс: "Ваш вклад в науку на удивление универсален, ваш взгляд всегда был абсолютно оригинальным, вы потрясающее воплощение симбиоза чистого математика и прикладного учёного:" При этих словах Винер достал носовой платок и прочувственно высморкался.

Он тихо умер весной 64-го года в Стокгольме. Голем пережил своего Творца.

Я понял, что наука - это призвание и служение, а не служба. Я научился люто ненавидеть любой обман и интеллектуальное притворство и гордиться отсутствием робости перед любой задачей, на решение которой у меня есть шансы. Все это стоит тех страданий, которыми приходится расплачиваться, но от того, кто не обладает достаточными физическими и моральными силами, я не стал бы требовать этой платы. Её не в состоянии уплатить слабый, ибо это убьет его. Норберт Винер.

математик, основатель кибернетики (США). Важнейшие труды: "Поведение, целенаправленность и телеология" (1947, в соавторстве с А.Розенблютом и Дж.Бигелоу); "Кибернетика, или управление и связь в животном и машине" (1948, оказал определяющее влияние на развитие мировой науки); "Человеческое использование человеческих существ. Кибернетика и общество" (1950); "Мое отношение к кибернетике. Ее прошлое и будущее" (1958); "Акционерное общество Бог и Голем" (1963, русский перевод "Творец и робот"). Автобиографические книги: "Бывший вундеркинд. Мое детство и юность" (1953) и "Я - математик" (1956). Роман "Искуситель" (1963). Национальная медаль науки за выдающиеся заслуги в области математики, техники и биологических наук (высшее отличие для ученых США, 1963). В. родился в семье иммигранта Лео В., еврейского уроженца г. Белосток (Россия), отказавшегося от традиционного иудаизма, последователя учения и переводчика произведений Л.Толстого на английский язык, профессора современных языков Университета Миссури, профессора славянских языков Гарвардского университета (Кембридж, Массачусетс). По изустной традиции семьи В., их род восходил к еврейскому ученому и богослову Моисею Маймониду (1135-1204), лейб-медику султана Салах-ад-дина Египетского. Ранним образованием В. руководил его отец по собственной программе. В 7 лет В. читал Дарвина и Данте, в 11 - окончил среднюю школу; высшее математическое образование и первую ученую степень бакалавра искусств получил в колледже Тафте (1908). Затем В. учился в аспирантуре Гарвардского университета, там же изучал философию у Дж.Сантаяны и Ройса, Магистр искусств (1912). Доктор философии (по математической логике) Гарвардского университета (1913). В 1913-1915 при поддержке Гарвардского университета продолжил образование в Кембриджском (Англия) и Геттингенском (Германия) университетах. В Кембриджском университете В. изучал теорию чисел у Дж.Х.Харди и математическую логику у Рассела, который "...внушил мне весьма разумную мысль, что человек, собирающийся специализироваться по математической логике и философии математики, мог бы знать кое-что и из самой математики..." (В.). В Геттингенском университете В. был слушателем курса философии у Гуссерля и курса математики у Гильберта. В связи с первой мировой войной возвратился в США (1915), где завершил образование в Колумбийском университете (Нью-Йорк), по окончании которого стал ассистентом кафедры философии Гарвардского университета. Преподаватель математики и математической логики в ряде университетов США (1915-1917). Журналист (1917-1919). Преподаватель кафедры математики Массачусетского технологического института (МТИ) с 1919 и до ухода из жизни; полный профессор математики МТИ с 1932. Ранние работы В. вел в области оснований математики. Работы конца 1920-х относятся к области теоретической физики: теории относительности и квантовой теории. Наибольших результатов как математик В. достиг в теории вероятностей (стационарных случайных процессах) и анализе (теории потенциала, гармонических и почти периодических функциях, тауберовых теоремах, рядах и преобразованиях Фурье). В области теории вероятностей В. практически полностью изучил важный класс стационарных случайных процессов (позднее названных его именем), построил (независимо от работ А.Н.Колмогорова) к 1940-м теории интерполяции, экстраполяции, фильтрации стационарных случайных процессов, броуновского движения. В 1942 В. приблизился к общей статистической теории информации: результаты изданы в монографии "Интерполяция, экстраполяция и сглаживание стационарных временных рядов" (1949), позднее издавалась под названием "Временные ряды". Вице-президент Американского математического общества в 1935-1936. Поддерживал интенсивные личные контакты со всемирно известными учеными Ж.Адамаром, М.Фреше, Дж.Берналом, Н.Бором, М.Борном, Дж.Холдейном и др. В качестве приглашенного профессора В. читал лекции в Университете Циньхуа (Пекин, 1936-1937). Время работы в Китае В. считал важным этапом, началом зрелости ученого мирового класса: "Мои труды начали приносить плоды - мне удалось не только опубликовать ряд значительных самостоятельных работ, но и выработать определенную концепцию, которую в науке уже нельзя было игнорировать". Развитие этой концепции прямо вело В. к созданию кибернетики. Еще в начале 1930-х В. сблизился с А.Розенблютом, сотрудником лаборатории физиологии У.Б.Кеннона из Гарвардской медицинской школы, организатором методологического семинара, объединившего представителей различных наук. Это облегчило для В. знакомство с проблемами биологии и медицины, укрепило его в мысли о необходимости широкого синтетического подхода к современной ему науке. Применение новейших технических средств во время второй мировой войны поставило противоборствующие стороны перед необходимостью решения серьезных технических проблем (в основном в области противовоздушной обороны, связи, криптологии и др.). Основное внимание уделялось решению проблем автоматического управления, автоматической связи, электрических сетей и вычислительной техники. В., как выдающийся математик, был привлечен к работам в этой области, результатом чего было начало изучения глубоких аналогий между процессами, протекающими в живых организмах и в электронных (электрических) системах, толчок зарождению кибернетики. В 1945-1947 В. написал книгу "Кибернетика", работая в Национальном кардиологическом институте Мексики (Мехико) у А.Розенблюта, соавтора кибернетики - науки об управлении, получении, передаче и преобразовании информации в системах любой природы (технические, биологические, социальные, экономические, административные и др.). В., которому в его исследованиях были близки традиции старых школ научного универсализма Г.Лейбница и Ж.Бюффона, серьезное внимание уделял проблемам методологии и философии науки, стремясь к широчайшему синтезу отдельных научных дисциплин. Математика (базовая его специализация) для В. была едина и тесно связана с естествознанием, и поэтому он выступал против ее резкого разделения на чистую и прикладную, так как: "...высшее назначение математики как раз и состоит в том, чтобы находить скрытый порядок в хаосе, который нас окружает...Природа, в широком смысле этого слова, может и должна служить не только источником задач, решаемых в моих иссследованиях, но и подсказывать аппарат, пригодный для их решений..." ("Я - математик"). Свои философские взгляды В. изложил в книгах "Человеческое использование человеческих существ. Кибернетика и общество" и "Кибернетика, или управление и связь в животном и машине". В философском плане В. были очень близки идеи физиков Копенгагенской школы М.Борна и Н.Бора, декларировавших независимость от "профессиональных метафизиков" в своем особом "реалистическом" мировоззрении вне идеализма и материализма. Считая, что "...господство материи характеризует определенную стадию физики 19 века в гораздо большей степени, чем современность. Сейчас "материализм" - это лишь что-то вроде вольного синонима "механицизма". По существу, весь спор между механицистами и виталистами можно отложить в архив плохо сформулированных вопросов..." ("Кибернетика"), В. в то же время пишет, что идеализм "...растворяет все вещи в уме..." ("Бывший вундеркинд"). В. испытывал также значительное влияние позитивизма. Опираясь на идеи Копенгагенской школы, В. старался связать кибернетику со статистической механикой в стохастической (вероятностной) концепции Вселенной. При этом, по признанию самого В., на его сближение с экзистенциализмом повлияла пессимистическая интерпретация им понятия "случайность". В книге ("Я - математик") В. пишет: "... Мы плывем вверх по течению, борясь с огромным потоком дезорганизованности, который в соответствии со вторым законом термодинамики стремится все свести к тепловой смерти - всеобщему равновесию и одинаковости. То, что Максвелл, Больцман и Гиббс в своих физических работах называли тепловой смертью, нашло своего двойника в этике Киркегора, утверждавшего, что мы живем в мире хаотической морали. В этом мире наша первая обязанность состоит в том, чтобы устраивать произвольные островки порядка и системы..." (известно стремление В. сопоставить методам статистической физики также учения Бергсона и Фрейда). Однако тепловая смерть все-таки мыслится В. здесь как предельное состояние, достижимое только в вечности, поэтому в будущем флуктуации упорядочения и вероятны: "...В мире, где энтропия в целом стремится к возрастанию, существуют местные и временные островки уменьшающейся энтропии, и наличие этих островков дает возможность некоторым из нас доказывать наличие прогресса..." ("Кибернетика и общество"). Механизм возникновения областей уменьшения энтропии "...состоит в естественном отборе устойчивых форм...здесь физика непосредственно переходит в кибернетику..." ("Кибернетика и общество"). По В., "...стремясь в конечном счете к вероятнейшему, стохастическая Вселенная не знает единственного предопределенного пути, и это позволяет порядку бороться до времени с хаосом... Человек воздействует в свою пользу на ход событий, гася энтропию извлеченной из окружающей среды отрицательной энтропией - информацией... Познание - часть жизни, более того - самая ее суть. Действенно жить - это значит жить, располагая правильной информацией..." ("Кибернетика и общество"). При всем при этом завоевания познания все-таки временны. В. никогда "...не представлял себе логику, знания и всю умственную деятельность как завершенную замкнутую картину; я мог понять эти явления как процесс, с помощью которого человек организует свою жизнь таким образом, чтобы она протекала в соответствии с внешней средой. Важна битва за знание, а не победа. За каждой победой, т.е. за всем, что достигает апогея своего, сразу же наступают сумерки богов, в которых само понятие победы растворяется в тот самый момент, когда

она будет достигнута..." ("Я - математик"). В. называл У.Дж.Гиббса (США) основоположником стохастического естествознания, считая себя продолжателем его направления. В целом же воззрения В. возможно трактовать как казуалистические с влиянием релятивизма и агностицизма. По В., ограниченность человеческих возможностей познания стохастической Вселенной обусловлена стохастическим характером связей между человеком и окружающей его средой, так как в "...вероятностном мире мы уже не имеем больше дела с величинами и суждениями, относящимися к определенной реальной Вселенной в целом, а вместо этого ставим вопросы, ответы на которые можно найти в допущении огромного числа подобных миров..." ("Кибернетика и общество"). Что касается вероятностей, то само их существование для В. является не более чем гипотезой, вследствие того, что "...никакое количество чисто объективных и отдельных наблюдений не может показать, что вероятность является обоснованной идеей. Иными словами, законы индукции в логике нельзя установить с помощью индукции. Индуктивная логика, логика Бэкона, представляет собой скорее нечто такое, в соответствии с чем мы можем действовать, чем то, что мы можем доказать..." ("Кибернетика и общество"). Социальные идеалы В. были следующими: выступая за общество, основанное на "...человеческих ценностях, отличных от купли-продажи...", за "...здоровую демократию и братство народов...", В. возлагал надежды на "...уровень общественного сознания...", на "...прорастание зерен добра...", колебался между отрицательным отношением к современному ему обществу капитализма и ориентацией на "...социальную ответственность деловых кругов..." ("Кибернетика и общество"). Роман В. "Искуситель" представляет собой вариант прочтения истории Фауста и Мефистофеля, в которой герой романа, талантливый ученый становится жертвой корысти деятелей бизнеса. В религиозных вопросах В. считал себя "...скептиком, стоящим вне вероисповеданий..." ("Бывший вундеркинд"). В книге "Творец и робот" В., проводя аналогию между Богом и кибернетиком, трактует Бога как предельное понятие (типа бесконечности в математике). В., считая культуру Запада морально и интеллектуально слабеющей, возлагал надежду на культуру Востока. В. писал, о том, что "...превосходство европейской культуры над великой культурой Востока - лишь временный эпизод в истории человечества...". В. даже предложил Дж.Неру план развития промышленности Индии посредством кибернетических заводов-автоматов во избежание, как он писал, "...опустошительной пролетаризации..." ("Я - математик"). (См. Кибернетика.)

Отличное определение

Неполное определение ↓