Мой забор - Выбор. Законы. Изгородь. Калитка. Монтаж. Ограждения. Каменный

Мой забор - Выбор. Законы. Изгородь. Калитка. Монтаж. Ограждения. Каменный

» » Теория вероятностей. Решение задач (2020). Вычисление экспериментальных вероятностей

Теория вероятностей. Решение задач (2020). Вычисление экспериментальных вероятностей

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Теория вероятностей

В группе 12 юношей и 8 девушек. По журналу наудачу отобрано 5 студентов. Найти вероятность того, что среди отобранных студентов ровно 3 девушек.

Количество отобранных студентов по журналу.

Вероятность выбрать наудачу девушку из всей группы.

Вероятность не выбрать наудачу девушку из всей группы (вероятность выбрать юношу).

k = 3 - количество отобранных девушек.

Вероятность того, что среди отобранных 5 студентов ровно 3 девушки.

В партии из 6 деталей имеется 4 стандартных. Наудачу взяли 3 детали. Найти вероятность того, что среди отобранных деталей хотя бы одна нестандартная.

Количество деталей в партии.

Количество стандартных деталей в партии.

Вероятность взять наудачу одну не стандартную деталь из партии.

Вероятность не взять наудачу одну не стандартную деталь из партии (вероятность взять наудачу одну стандартную деталь из партии).

Вероятность не взять наудачу две не стандартные детали из партии (вероятность взять наудачу две стандартные детали из партии).

Вероятность не взять наудачу три не стандартные детали из партии (вероятность взять наудачу три стандартные детали из партии).

Вероятность того, что среди отобранных деталей хотя бы одна нестандартная.

Станок состоит из 3 независимо работающих деталей. Вероятность отказа деталей соответственно равна 0,1; 0,2; 0,15. Найти вероятность поломки станка, если для этого достаточно отказа хотя бы одной детали.

Вероятность того, что откажет 1-я деталь.

Вероятность того, что откажет 2-я деталь.

Вероятность того, что откажет 3-я деталь.

Вероятность того, что 1-я деталь не откажет.

Вероятность того, что 2-я деталь не откажет.

Вероятность того, что 3-я деталь не откажет.

Вероятность поломки станка, если для этого достаточно отказа хотя бы одной детали.

Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,5, а для второго- 0,6. Найти вероятность того, что при одном залпе в мишень попадёт только один из стрелков.

Вероятность того, что первый стрелок попадёт по мишени.

Вероятность того, что второй стрелок попадёт по мишени.

Вероятность того, что первый стрелок не попадёт по мишени.

Вероятность того, что второй стрелок не попадёт по мишени.

Вероятность того, что при одном залпе в мишень попадёт только один из стрелков.

В ящике 6 приборов, из которых 4 работающих. Наудачу взяли 3 штуки. Найти вероятность того, что все взятые приборы окажутся работающими.

Количество взятых наудачу приборов.

Вероятность взять из ящика работающий прибор.

Вероятность не взять из ящика работающий прибор.

Воспользуемся формулой Бернулли:

k = 3 - количество работающих приборов, из взятых наудачу.

Вероятность того, все взятые приборы окажутся работающими.

В первой урне 4 белых и 1 чёрный, во второй урне 2 белых и 5 чёрных шаров. Из первой во вторую переложили 2 шара, затем из второй урны извлекли один шар. Найти вероятность того, что выбранный из второй урны шар - чёрный.

Определимся с возможными исходами событий, при перекладывании 2-х шаров из 1-й урны во 2-ю.

Н1 - гипотеза о том что из первой урны вытащили 2 белых шара.

Н2 - гипотеза о том что из первой урны вытащили 1 белый и 1 чёрный шар.

Вероятность достать из 1-й урны чёрный шар.

Вероятность достать из 1-й урны белый шар.

Вероятность гипотезы Н1.

Вероятность гипотезы Н2.

Теперь рассмотрим вероятность события когда случилась каждая из гипотез.

Вероятность вытащить из 2-й урны чёрный шар, если случилась гипотеза Н1.

Вероятность вытащить из 2-й урны чёрный шар, если случилась гипотеза Н2.

Вероятность того, что выбранный из второй урны шар - чёрный.

Вероятность того, что деталь изготовленная на заводе №1 отличного качества.

Вероятность того, что деталь изготовленная на заводе №2 отличного качества.

Вероятность того, что деталь изготовленная на заводе №3 отличного качества.

Вероятность вытащить из ящика, деталь изготовленную на заводе №1.

Вероятность вытащить из ящика, деталь изготовленную на заводе №2.

Вероятность вытащить из ящика, деталь изготовленную на заводе №3.

По формуле полной вероятности:

Вероятность того, что извлечённая наудачу деталь окажется отличного качества.

Имеется три партии изделий по 25 изделий в каждой. Число стандартных изделий соответственно равно 20, 21, 22. Из наудачу выбранной партии наудачу извлечено изделие, оказавшееся стандартным. Найти вероятность того, что оно было извлечено из 1 партии.

Вероятность того, что выбранная наудачу деталь из 1-й партии стандартная.

Вероятность того, что выбранная наудачу деталь из 2-й партии стандартная.

Вероятность того, что выбранная наудачу деталь из 3-й партии стандартная.

Вероятность наудачу выбрать одну из трёх партий.

По формуле Бейеса:

Вероятность того, что наудачу извлеченное изделие было извлечено из 1 партии.

Два автомата производят детали. Производительность второго автомата вдвое больше, чем первого. Первый автомат производит 80% деталей отличного качества, а второй - 90%. Наудачу взятая деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена 1 автоматом.

теория вероятность нахождение выбор попадание

Вероятность того, что деталь, произведённая 1-м автоматом отличного качества.

Вероятность того, что деталь, произведённая 2-м автоматом отличного качества.

Так как производительность второго автомата вдвое больше, чем первого, то из 3-х условно изготовленных деталей две детали 2-го автомата и одна 1-го автомата.

Вероятность наудачу выбрать деталь, изготовленную 1-м автоматом.

Вероятность наудачу выбрать деталь, изготовленную 2-м автоматом.

По формуле Бейеса:

Вероятность того, наудачу взятая деталь отличного качества, оказалась деталь, произведенная 1-м автоматом.

Монету бросают 9 раз. Найти вероятность того, что «герб» выпадет: а.) менее 4 раз; б.) не менее 4 раз.

Вероятность того, что выпадет «герб».

Вероятность того, что «герб» не выпадет.

Воспользуемся формулой Бернулли:

Количество бросков монет.

Вероятность выпадения монеты «гербом» менее 4 раз.

k = 0, 1, 2, 3 - количество раз выпадения «герба».

Вероятность выпадения монеты «гербом» 0 раз из 9.

Вероятность выпадения монеты «гербом» 1 раз из 9.

Вероятность выпадения монеты «гербом» 2 раза из 9.

Вероятность выпадения монеты «гербом» 3 раза из 9.

Вероятность выпадения монеты «гербом» не менее 4 раз.

k = 4, 5, 6, 7, 8, 9 - количество раз выпадения «герба».

Вероятность выпадения монеты «гербом» 4 раза из 9.

Вероятность выпадения монеты «гербом» 5 раз из 9.

Вероятность выпадения монеты «гербом» 6 раз из 9.

Вероятность выпадения монеты «гербом» 7 раз из 9.

Вероятность выпадения монеты «гербом» 8 раз из 9.

Вероятность выпадения монеты «гербом» 9 раз из 9.

Вероятность рождения мальчика равна 0,51. Найти вероятность того, что среди 100 новорождённых окажется 50 мальчиков.

Вероятность рождения мальчика.

Вероятность не рождения мальчика (вероятность рождения девочки).

Количество новорождённых.

Количество рожденных мальчиков.

Воспользуемся локальной теоремой Муавра-Лапласа, т.к.

Табулированная чётная функция Гаусса,

По таблице находим значение

Вероятность того, что среди 100 новорождённых окажется 50 мальчиков.

Вероятность появления события в каждом из 100 независимых испытаний равна 0,8. Найти вероятность того, что событие появится: а.) не менее 75 раз и не более 90 раз; б.) не менее 90 раз.

Вероятность появления события.

Вероятность не появления события.

Общее количество испытаний.

Количество испытаний.

Количество испытаний.

По таблице находим значение

Вероятность того, что событие появится не менее 75 раз и не более 90 раз.

Количество испытаний.

Количество испытаний.

Воспользуемся интегральной теоремой Муавра-Лапласа т.к.

Табулированная нечётная функция Лапласа,

По таблице находим значение

Вероятность того, что событие появится не менее 90 раз.

Дискретная случайная величина задана законом распределения:

а.) построить многоугольник распределения и найти функцию распределения F(x);

б.) Найти М(Х), Д(Х), .

Математическое ожидание.

Дисперсия.

Средне квадратическое отклонение.

Задана плотность распределения f(x) непрерывной случайной величины Х.

а.) найти А и функцию распределения F(x);

б.) найти М(х), Д(х),

Размещено на Allbest.ru

Подобные документы

    Применение классического определения вероятности для нахождения среди определенного количества деталей заданных комбинаций. Определение вероятности обращения пассажира в первую кассу. Использование локальной теоремы Муавра-Лапласа для оценки отклонения.

    контрольная работа , добавлен 23.11.2014

    Анализ решений заданий по теории вероятности: определить вероятность того, что на верхних гранях двоих костей сумма очков не превосходит 12, определить среди лотерейных билетов вероятное количество выигрышных и количество бракованного товара в партии.

    контрольная работа , добавлен 27.12.2010

    Порядок определения степени вероятности нахождения значения из десяти возможных. Методика вычисления стандартных деталей среди проверенных с вероятностью 0.95. Оценка вероятности подъема в цене акций предприятия, а также получения прибыли на бирже.

    контрольная работа , добавлен 16.10.2011

    Основные понятия комбинаторики. Определение теории вероятности. Понятие математического ожидания и дисперсии. Основные элементы математической статистики. Условная вероятность как вероятность одного события при условии, что другое событие уже произошло.

    реферат , добавлен 25.11.2013

    Применение классического определения вероятности в решении экономических задач. Определение вероятности попадания на сборку бракованных и небракованных деталей. Вычисление вероятности и выборочного значения статистики при помощи формулы Бернулли.

    контрольная работа , добавлен 18.09.2010

    Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.

    лекция , добавлен 02.04.2008

    Характеристика полной группы событий как совокупность всех возможных результатов опыта. Способы определения вероятности событий в задачах разного направления. Нахождение вероятности количества нестандартных деталей. Построение функции распределения.

    задача , добавлен 19.03.2011

    Анализ случайных явлений, статистическая обработка результатов численных экспериментов. Способы вычисления наступления предполагаемого события. Решение задач, связанных с теорией вероятности. Вероятность попадания случайной величины в заданный интервал.

    контрольная работа , добавлен 21.09.2013

    Поиск искомой вероятности через противоположное событие. Интегральная формула Муавра–Лапласа. Нахождение вероятности попадания в заданный интервал распределенной случайной величины по ее математическому ожиданию и среднему квадратическому отклонению.

    контрольная работа , добавлен 17.03.2011

    Вычисление математического ожидания, дисперсии и коэффициента корреляции. Определение функции распределения и его плотности. Нахождение вероятности попадания в определенный интервал. Особенности построения гистограммы частот. Применение критерия Пирсона.

Вероятность показывает возможность того или иного события при определенном количестве повторений. Это число возможных результатов с одним или несколькими исходами, поделенное на общее количество возможных событий. Вероятность нескольких событий вычисляется путем разделения задачи на отдельные вероятности с последующим перемножением этих вероятностей.

Шаги

Вероятность единичного случайного события

  1. Выберите событие со взаимоисключающими результатами. Вероятность можно рассчитать лишь в том случае, если рассматриваемое событие либо происходит, либо не происходит. Нельзя одновременно получить какое-либо событие и противоположный ему результат. Примером таких событий служат выпадение 5 на игровом кубике или победа определенной лошади на скачках. Пять либо выпадет, либо нет; определенная лошадь либо придет первой, либо нет.

    • Например, невозможно вычислить вероятность такого события: при одном броске кубика выпадут 5 и 6 одновременно.
  2. Определите все возможные события и результаты, которые могут произойти. Предположим, необходимо определить вероятность того, что при броске игрового кубика с 6 цифрами выпадет тройка. «Выпадение тройки» является событием, и поскольку мы знаем, что может выпасть любая из 6 цифр, число возможных исходов равно шести. Таким образом, мы знаем, что в данном случае есть 6 возможных результатов и одно событие, вероятность которого мы хотим определить. Ниже приведено еще два примера.

    • Пример 1 . В данном случае событием является «выбор дня, который приходится на выходные», а число возможных исходов равно количеству дней недели, то есть семи.
    • Пример 2 . Событием является «вынуть красный шар», а число возможных исходов равно общему количеству шаров, то есть двадцати.
  3. Поделите число событий на количество возможных исходов. Таким образом вы определите вероятность одиночного события. Если мы рассматриваем случай выпадения 3 при бросании кубика, число событий равно 1 (тройка находится лишь на одной грани кубика), а общее количество исходов равно 6. В результате получаем соотношение 1/6, 0,166, или 16,6 %. Вероятность события для двух приведенных выше примеров находится следующим образом:

    • Пример 1 . Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? Число событий равно 2, так как в одной неделе два выходных дня, а общее количество исходов составляет 7. Таким образом, вероятность равна 2/7. Полученный результат можно записать также как 0,285 или 28,5 %.
    • Пример 2 . В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Число событий равно 5, поскольку в коробке 5 красных шаров, а общее количество исходов составляет 20. Находим вероятность: 5/20 = 1/4. Полученный результат можно записать также как 0,25 или 25 %.
  4. Сложите вероятности всех возможных событий и проверьте, получится ли в сумме 1. Суммарная вероятность всех возможных событий должна составлять 1, или 100 %. Если у вас не получится 100 %, скорее всего, вы допустили ошибку и пропустили одно или несколько возможных событий. Проверьте свои вычисления и убедитесь, что вы учли все возможные исходы.

    • Например, вероятность выпадения 3 при бросании игрового кубика составляет 1/6. При этом вероятность выпадения любой другой цифры из пяти оставшихся также равна 1/6. В результате получаем 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6, то есть 100 %.
    • Если вы, например, забудете о цифре 4 на кубике, сложение вероятностей даст вам лишь 5/6, или 83 %, что не равно единице и указывает на ошибку.
  5. Представьте вероятность невозможного исхода в виде 0. Это означает, что данное событие не может произойти, и его вероятность равна 0. Таким образом вы сможете учесть невозможные события.

    • Например, если бы вы вычисляли вероятность того, что в 2020 году Пасха придется на понедельник, то получили бы 0, поскольку Пасха всегда празднуется в воскресенье.

    Вероятность нескольких случайных событий

    1. При рассмотрении независимых событий вычисляйте каждую вероятность отдельно. После того как вы определите, каковы вероятности событий, их можно будет рассчитать отдельно. Предположим, необходимо узнать вероятность того, что при бросании кубика два раза подряд выпадет 5. Мы знаем, что вероятность выпадения одной пятерки составляет 1/6, и вероятность выпадения второй пятерки также равна 1/6. Первый исход не связан со вторым.

      • Несколько выпадений пятерок называются независимыми событиями , поскольку то, что выпадет первый раз, не влияет на второе событие.
    2. Учитывайте влияние предыдущих исходов при расчете вероятности для зависимых событий. Если первое событие влияет на вероятность второго исхода, говорят о расчете вероятности зависимых событий . Например, если вы выбираете две карты из колоды, состоящей из 52 карт, после взятия первой карты состав колоды изменяется, что влияет на выбор второй карты. Чтобы рассчитать вероятность второго из двух зависимых событий, необходимо вычесть 1 из количества возможных результатов при расчете вероятности второго события.

      • Пример 1 . Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.
        • После этого вероятность того, что вторая карта окажется трефовой масти, составляет 12/51, поскольку одной трефовой карты уже нет. Это объясняется тем, что первое событие влияет на второе. Если вы вытянули тройку треф и не положили ее обратно, в колоде будет на одну карту меньше (51 вместо 52).
      • Пример 2 . В коробке 4 синих, 5 красных и 11 белых шаров. Если наугад вынуть три шара, какова вероятность того, что первый окажется красным, второй синим, а третий белым?
        • Вероятность того, что первый шар окажется красным, составляет 5/20, или 1/4. Вероятность того, что второй шар будет синим, равна 4/19, поскольку в коробке осталось на один шар меньше, но по прежнему 4 синих шара. Наконец, вероятность того, что третий шар окажется белым, составляет 11/18, так как мы уже вынули два шара.
    3. Перемножьте вероятности каждого отдельного события. Независимо от того, имеете ли вы дело с независимыми или зависимыми событиями, а также количества исходов (их может быть 2, 3 и даже 10), можно рассчитать общую вероятность, умножив вероятности всех рассматриваемых событий друг на друга. В результате вы получите вероятность нескольких событий, следующих одно за другим . Например, стоит задача Найти вероятность того, что при бросании кубика два раза подряд выпадет 5 . Это два независимых события, вероятность каждого из которых равна 1/6. Таким образом, вероятность обоих событий составляет 1/6 x 1/6 = 1/36, то есть 0,027, или 2,7 %.

      • Пример 1 . Из колоды наугад одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность первого события составляет 13/52. Вероятность второго события равна 12/51. Находим общую вероятность: 13/52 x 12/51 = 12/204 = 1/17, то есть 0,058, или 5,8 %.
      • Пример 2 . В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если наугад вытянуть из коробки три шара один за другим, какова вероятность того, что первый окажется красным, второй синим, а третий белым? Вероятность первого события составляет 5/20. Вероятность второго события равна 4/19. Вероятность третьего события составляет 11/18. Таким образом, общая вероятность равна 5/20 x 4/19 x 11/18 = 44/1368 = 0,032, или 3,2 %.

Пример 6. В ящике лежит 11 деталей, 3 из них нестандартные. Из ящика дважды берут по одной детали, не возвращая их обратно. Найти вероятность того, что во второй раз из ящика будет извлечена стандартная деталь - событие В, если в первый раз была извлечена нестандартная деталь - событие А.

После первого извлечения в ящике из 10 деталей осталось 8 стандартных, и, следовательно, искомая вероятность

Формула полной вероятности. Формула Байеса

Пример 7. Имеются три одинаковые с виду урны: в первой 5 белых и 10 черных шаров; во второй 9 белых и 6 черных шаров; в третьей только черные шары. Из наугад выбранной урны достают один шар. Какова вероятность того, что этот шар черный.

Событие A – достали черный шар. Событие A

H 1 – шар достали из первой урны;

H 2 – шар достали из второй урны;

H 3 – шар достали из третьей урны.

Так как урны с виду одинаковы, то:

A для каждой гипотезы.

Черный шар достали из первой урны:

Аналогично:

1/3*2/3+1/3*2/5+1/3*1=31/45

Пример 8. Имеются две урны: в первой 5 белых и 10 черных шаров; во второй урне 9 белых и 6 черных шаров. Из первой урны во вторую перекладывают, не глядя, один шар. После этого из второй урны достают один шар. Найти вероятность того, что этот шар будет черным.

Событие A – из второй урны достали черный шар. Событие A может произойти с одним из несовместных событий (гипотез):

H 1 – из первой урны во вторую переложили белый шар;

H 2 – из первой урны во вторую переложили черный шар.

Вероятности гипотез:

Найдем условные вероятности события A . Если из первой урны во вторую переложили белый шар, то во второй урне стало 10 белых и 6 черных шаров. Значит, вероятность достать из нее черный шар равна:

Аналогично:

По формуле полной вероятности:

Пример 9. Имеются три урны: в первой 5 белых и 10 черных шаров; во второй 9 белых и 6 черных шаров; в третьей урне 15 черных шаров (белых шаров нет). Из наугад выбранной урны достали один шар. Этот шар оказался черным. Найти вероятность того, что шар достали из второй урны.

Событие A – из наугад выбранной урны достали один шар.

Событие A может произойти с одним из несовместных событий (гипотез):

H 1 – шар достали из первой урны;

H 2 – шар достали из второй урны;

H 3 – шар достали из третьей урны.

Априорные вероятности гипотез равны:

В задаче 4 найдены условные вероятности события A и его полная вероятность:

Найдем по формуле Байеса апостериорную вероятность гипотезы H 2 .

Черный шар достали из второй урны:

Сравним и:

Таким образом, если известно, что достали черный шар, то вероятность того, что его достали из второй урны уменьшается (это соответствует условию – во второй урне меньше всего черных шаров).

Формула Бернулли

Пример 10. В семье шесть детей. Вероятность рождения девочки равна 0,49. Найти вероятность того, что среди этих детей одна девочка.

Событие A – родилась девочка.

P = P (A ) = 0,49;

q = 1 – p = 1 – 0,49 = 0,51.

Формула Бернулли:

Всего шесть детей, значит n =6.

Надо найти вероятность того, что среди них точно одна девочка, значит m = 1.

Пример 11. Монету бросают 6 раз. Найти вероятность того, что не более 5 раз выпадет герб.

Событие A – при подбрасывании монеты выпадает герб.

Монета подбрасывается 6 раз, значит n = 6.

Событие B – герб выпадет не более 5 раз.

Противоположное событие:

– герб выпадет более 5 раз, то есть 6 раз.

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является "честной" и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая .

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз - скажем, 1000 - и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: "Этого не может быть!". На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока - чуть более 22%.

Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности. Вы можете спросить: "Что такое истинная вероятность?" На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой. Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

Вычисление экспериментальных вероятностей

Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

Принцип P (экспериментальный)

Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

a) Определите вероятность того, что человек - правша.

b) Определите вероятность того, что человек - левша.

c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

Решение

a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками - 1. Общее количество наблюдений - 100. Таким образом, вероятность того, что человек правша, есть Р
P = 82/100, или 0,82, или 82%.

b) Вероятность того, что человек левша, есть Р, где
P = 17/100, или 0,17, или 17%.

c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
P = 1/100, или 0,01, или 1%.

d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% - левши. Отсюда
17% от 120 = 0,17.120 = 20,4,
то есть мы можем ожидать, что около 20 игроков являются левшами.

Пример 2 Контроль качества . Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса. Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет. Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали. Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

a) Какова вероятность того, что семя прорастет?

b) Отвечают ли семена государственным стандартам?

Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
P = 417/500 = 0,834, или 83.4%.

b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается. В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал "Все любят Реймонда" на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research). Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond" в течение данной недели? на «Закон и порядок»?

Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на "Все любят Реймонда" равна Р, и
P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.
Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, и
P = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.
Эти проценты называются рейтингами.

Теоретическая вероятность

Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии. Каждый возможный результат такого эксперимента называется исход . Множество всех возможных исходов называется пространством исходов . Событие это множество исходов, то есть подмножество пространства исходов.

Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

b) Пространство исходов

Решение
a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.


Предположим, что мы бросаем игральную кость. Найдите
a) Исходы
b) Пространство исходов

Решение
a) Исходы: 1, 2, 3, 4, 5, 6.
b) Пространство исходов {1, 2, 3, 4, 5, 6}.

Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, "монета упадет решкой" можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны. Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора - одинаковые. Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

Принцип P (Теоретический)

Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
P(E) = m/n.

Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

Решение Событие - это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
P(вытягивания туза) = 4/52, или 1/13.

Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
P(выбора красного шарика) = 3/7.

Следующие утверждения - это результаты из принципа P.

Свойства вероятности

a) Если событие E не может случиться, тогда P(E) = 0.
b) Если событие E случиться непременно тогда P(E) = 1.
c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52 C 2 . Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13 C 2 . Тогда,
P(вытягивания 2-х пик)= m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

Решение Число способов выбора троих человек из группы 10 человек 10 C 3 . Один мужчина может быть выбран 6 C 1 способами, и 2 женщины могут быть выбраны 4 C 2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6 C 1 . 4 C 2 . Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках. (Лучше, если кубики разные, скажем один красный а второй голубой - это поможет визуализировать результат.)

Пары цифр, в сумме составляющие 8, показаны на рисунке внизу. Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.

Пример 1. В первой урне: три красных, один белый шара. Во второй урне: один красный, три белых шара. Наугад бросают монету: если герб – выбирают из первой урны, в противном случае– из второй.
Решение:
а) вероятность того, что достали красный шар
A – достали красный шар
P 1 – выпал герб, P 2 - иначе

b) Выбран красный шар. Найти вероятность того, что он взят из первой урны, из второй урны.
B 1 – из первой урны, B 2 – из второй урны
,

Пример 2. В ящике 4 шара. Могут быть: только белые, только черные или белые и черные. (Состав неизвестен).
Решение:
A – вероятность появления белого шара
а) Все белые:
(вероятность того, что попался один из трех вариантов, где есть белые)
(вероятность появления белого шара, где все белые)

б) Вытащили, где все черные



в) вытащили вариант, где все белые или/и черные

- хотя бы один из них белый

P а +P б +P в =

Пример 3 . В урне 5 белых и 4 черных шара. Из нее вынимают подряд 2 шара. Найти вероятность того, что оба шара белые.
Решение:
5 белых, 4 черных шара
P(A 1) – вынули белый шар

P(A 2) – вероятность того, что второй шар тоже белый

P(A) – подряд выбрали белые шары

Пример 3а . В пачке 2 фальшивых и 8 настоящих денежных купюр. Из пачки вытянули 2 купюры подряд. Найти вероятность что обе они фальшивые.
Решение:
P(2) = 2/10*1/9 = 1/45 = 0.022

Пример 4. Имеется 10 урн. В 9 урнах по 2 черных и 2 белых шара. В 1 урне 5 белых и 1 черный. Из урны, взятой наугад, вынули шар.
Решение:
P(A) - ? белый шар взят из урны, где 5 белых
B – вероятность того, что вынули из урны, где 5 белых
, - вынули из других
C 1 – вероятность появления белого шара в 9 ур.

С 2 – вероятность появления белого шара, где их 5

P(A 0)= P(B 1) P(C 1)+P(B 2) P(C 2)

Пример 5. 20 цилиндрических валиков и 15 конусообразных. Сборщик берет 1 валик, а затем еще один.
Решение:
а) оба валика цилиндрические
P(Ц 1)=; P(Ц 2)=
Ц 1 – первый цилиндр, Ц 2 – второй цилиндр
P(A)=P(Ц 1)P(Ц 2) =
б) Хотя бы один цилиндр
K 1 – первый конусообр.
K 2 - второй конусообр.
P(B)=P(Ц 1)P(K 2)+P(Ц 2)P(K 1)+P(Ц 1)P(Ц 2)
;

с) первый цилиндр, а второй нет
P(C)=P(Ц 1)P(K 2)

д) Ни один цилиндр.
P(D)=P(K 1)P(K 2)

е) Ровно 1 цилиндр
P(E)=P(Ц 1)P(K 2)+P(K 1)P(K 2)

Пример 6. В ящике 10 стандартных деталей и 5 бракованных.
Наугад извлекают три детали
а) Из них одна бракованная
P n (K)=C n k ·p k ·q n-k ,
P – вероятность бракованных изделий

q – вероятность стандартных деталей

n=3, три детали


б) две из трех деталей бракованных P(2)
в) хотя бы одна стандартная
P(0)-нет бракованных

P=P(0)+ P(1)+ P(2) - вероятность того, что хотя бы одна деталь окажется стандартной

Пример 7 . В 1-й урне по 3 белых и черных шара, а во 2-й - 3 белых и 4 черных. Из 1-й урны во 2-ю не глядя перекладывают 2 шара, а затем из 2-й вытягивают 2 шара. Какова вероятность, что они разных цветов?
Решение:
При перекладывании шаров из первой урны возможны следующие варианты:
а) вынули за подряд 2 белых шара
P ББ 1 =
На втором шаге всегда будет на один шар меньше, поскольку на первом шаге уже вынули один шар.
б) вынули один белый и один черный шар
Ситуация, когда первым вынули белый шар, а потом черный
P БЧ =
Ситуация, когда первым вынули черный шар, а потом белый
P ЧБ =
Итого: P БЧ 1 =
в) вынули за подряд 2 черных шара
P ЧЧ 1 =
Поскольку из первой урны переложили во вторую урну 2 шара, то общей количество шаров во второй урне будет 9 (7 + 2). Соответственно, будем искать все возможные варианты:
а) из второй урны вынули сначала белый, потом черный шар

P БЧ 2 P ББ 1 - означает вероятность того, что вынули сначала белый, потом черный шар при условии, что из первой урны за подряд вынули 2 белых шара. Именно поэтому количество белых шаров в этом случае равно 5 (3+2).
P БЧ 2 P БЧ 1 - означает вероятность того, что вынули сначала белый, потом черный шар при условии, что из первой урны вынули белый и черный шары. Именно поэтому количество белых шаров в этом случае равно 4 (3+1), а черных шаров равно пяти (4+1).
P БЧ 2 P ЧЧ 1 - означает вероятность того, что вынули сначала белый, потом черный шар при условии, что из первой урны вынули за подряд оба черных шара. Именно поэтому количество черных шаров в этом случае равно 6 (4+2).

Вероятность того, что извлеченные 2 шара окажутся разных цветов, равна:

Ответ: P = 0.54

Пример 7а . Из 1-ой урны, содержащей 5 белых и 3 черных шара наугад переложили 2 шара во 2-ую урну, содержащую 2 белых и 6 черных шаров. Затем из 2-ой урны наугад извлекли 1 шар.
1) Какова вероятность того, что извлеченный из 2-ой урны шар оказался белым?
2) Шар извлеченный из 2-ой урны оказался белым. Вычислите вероятность того, что из 1-ой урны во 2-ую были переложены шары разного цвета.
Решение.
1) Событие А - извлеченный из 2-ой урны шар оказался белым. Рассмотрим следующие варианты наступления этого события.
а) Из первой урны во вторую положили два белых шара: P1(бб) = 5/8*4/7 = 20/56.
Всего во второй урне 4 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(4) = 20/56*(2+2)/(6+2) = 80/448
б) Из первой урны во вторую положили белый и черный шары: P1(бч) = 5/8*3/7+3/8*5/7 = 30/56.
Всего во второй урне 3 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(3) = 30/56*(2+1)/(6+2) = 90/448
в) Из первой урны во вторую положили два черных шара: P1(чч) = 3/8*2/7 = 6/56.
Всего во второй урне 2 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(2) = 6/56*2/(6+2) = 12/448
Тогда вероятность того, что извлеченный из 2-ой урны шар оказался белым равна:
P(A) = 80/448 + 90/448 + 12/448 = 13/32

2) Шар извлеченный из 2-ой урны оказался белым, т.е. полная вероятность равна P(A)=13/32.
Вероятность того, что во вторую урну были переложены шары разного цвета (черный и белый) и был выбран белый: P2(3) = 30/56*(2+1)/(6+2) = 90/448
P = P2(3)/ P(A) = 90/448 / 13/32 = 45/91

Пример 7б . В первой урне 8 белых и 3 черных шара, во второй 5 белых и 3 черных. Из первой наудачу выбирают один шар, а из второй два шара. После этого из выбранных трех шаров наудачу берут один шар. Этот последний шар оказался черным. Найти вероятность того, что из первой урны был выбран белый шар.
Решение.
Рассмотрим все варианты события А – из трех шаров, вынутый шар оказался черным. Каким образом могло произойти, что среди трех шаров оказался черный?
а) Из первой урны вынули черный шар, из второй урны вынули два белых шара.
P1 = (3/11)(5/8*4/7) = 15/154
б) Из первой урны вынули черный шар, из второй урны вынули два черных шара.
P2 = (3/11)(3/8*2/7) = 9/308
в) Из первой урны вынули черный шар, из второй урны вынули один белый и один черный шара.
P3 = (3/11)(3/8*5/7+5/8*3/7) = 45/308
г) Из первой урны вынули белый шар, из второй урны вынули два черных шара.
P4 = (8/11)(3/8*2/7) = 6/77
д) Из первой урны вынули белый шар, из второй урны вынули один белый и один черный шара.
P5 = (8/11)(3/8*5/7+5/8*3/7) = 30/77
Полная вероятность равна: P = P1+P2+ P3+P4+P5 = 15/154+9/308+45/308+6/77+30/77 = 57/77
Вероятность того, что из белой урны был выбран белый шар, равна:
Pб(1) = P4 + P5 = 6/77+30/77 = 36/77
Тогда вероятность того, что из первой урны был выбран белый шар при условии, что из трех шаров был выбран черный, равна:
Pч = Pб(1)/P = 36/77 / 57/77 = 36/57

Пример 7в . В первой урне 12 белых и 16 черных шаров, во второй 8 белых и 10 черных. Одновременно из 1-ой и 2-ой урны вытаскивают по шару, перемешивают и возвращают по одному в каждую урну. Затем из каждой урны вытаскивают по шару. Они оказались одного цвета. Определить вероятность того, что в 1-ой урне осталось столько же белых шаров, сколько было в начале.

Решение.
Событие А - одновременно из 1-ой и 2-ой урны вытаскивают по шару.
Вероятность вытащить белый шар из первой урны: P1(Б) = 12/(12+16) = 12/28 = 3/7
Вероятность вытащить черный шар из первой урны: P1(Ч) = 16/(12+16) = 16/28 = 4/7
Вероятность вытащить белый шар из второй урны: P2(Б) = 8/18 = 4/9
Вероятность вытащить черный шар из второй урны: P2(Ч) = 10/18 = 5/9

Событие А произошло. Событие В - из каждой урны вытаскивают по шару. После перемешивания, вероятность возвращения шара в урну белого или черного шара равна ½.
Рассмотрим варианты события В - они оказались одного цвета.

Для первой урны
1) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ББ/А=Б) = ½ * 12/28 * 3/7 = 9/98
2) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ББ/А=Ч) = ½ * 13/28 * 4/7 = 13/98
3) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(БЧ/А=Б) = ½ * 16/28 * 3/7 = 6/49
4) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(БЧ/А=Ч) = ½ * 15/28 * 4/7 = 15/98
5) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ЧБ/А=Б) = ½ * 11/28 * 3/7 = 33/392
6) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ЧБ/А=Ч) = ½ * 12/28 * 4/7 = 6/49
7) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(ЧЧ/А=Б) = ½ * 17/28 * 3/7 = 51/392
8) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(ЧЧ/А=Ч) = ½ * 16/28 * 4/7 = 8/49

Для второй урны
1) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ББ/А=Б) = ½ * 8/18 * 3/7 = 2/21
2) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ББ/А=Ч) = ½ * 9/18 * 4/7 = 1/7
3) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(БЧ/А=Б) = ½ * 10/18 * 3/7 = 5/42
4) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(БЧ/А=Ч) = ½ * 9/18 * 4/7 = 1/7
5) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ЧБ/А=Б) = ½ * 7/18 * 3/7 = 1/12
6) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ЧБ/А=Ч) = ½ * 8/18 * 4/7 = 8/63
7) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(ЧЧ/А=Б) = ½ * 11/18 * 3/7 = 11/84
8) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(ЧЧ/А=Ч) = ½ * 10/18 * 4/7 = 10/63

Шары оказались одного цвета:
а) белые
P1(Б) = P1(ББ/А=Б) + P1(ББ/А=Ч) + P1(ЧБ/А=Б) + P1(ЧБ/А=Ч) = 9/98 + 13/98 + 33/392 + 6/49 = 169/392
P2(Б) = P1(ББ/А=Б) + P1(ББ/А=Ч) + P1(ЧБ/А=Б) + P1(ЧБ/А=Ч) = 2/21+1/7+1/12+8/63 = 113/252
б) черный
P1(Ч) = P1(БЧ/А=Б) + P1(БЧ/А=Ч) + P1(ЧЧ/А=Б) + P1(ЧЧ/А=Ч) = 6/49 + 15/98 + 51/392 + 8/49 = 223/392
P2(Ч) = P1(БЧ/А=Б) + P1(БЧ/А=Ч) + P1(ЧЧ/А=Б) + P1(ЧЧ/А=Ч) =5/42+1/7+11/84+10/63 = 139/252

P = P1(Б)* P2(Б) + P1(Ч)* P2(Ч) = 169/392*113/252 + 223/392*139/252 = 5/42

Пример 7г . В первом ящике 5 белых и 4 синих шарика, во втором 3 и 1, а в третьем - 4 и 5 соответственно. Наугад выбран ящик и из него вытащенный шарик, оказался синий. Какова вероятность того, что этот шарик со второго ящика?

Решение.
A - событие извлечения синего шарика. Рассмотрим все варианты исхода такого события.
H1 - вытащенный шарик из первого ящика,
H2 - вытащенный шарик из второго ящика,
H3 - вытащенный шарик из третьего ящика.
P(H1) = P(H2) = P(H3) = 1/3
Согласно условию задачи условные вероятности события А равны:
P(A|H1) = 4/(5+4) = 4/9
P(A|H2) = 1/(3+1) = 1/4
P(A|H3) = 5/(4+5) = 5/9
P(A) = P(H1)*P(A|H1) + P(H2)*P(A|H2) + P(H3)*P(A|H3) = 1/3*4/9 + 1/3*1/4 + 1/3*5/9 = 5/12
Вероятность того, что этот шарик со второго ящика равна:
P2 = P(H2)*P(A|H2) / P(A) = 1/3*1/4 / 5/12 = 1/5 = 0.2

Пример 8 . В пяти ящиках с 30 шарами в каждом содержится по 5 красных шаров (это ящик состава H1), в шести других ящиках с 20 шарами в каждом - по 4 красных шара (это ящик состава H2). Найти вероятность того, что наугад взятый красный шар содержится в одном из первых пяти ящиков.
Решение: Задача на применение формулы полной вероятности.

Вероятность того, что любой взятый шар содержится в одном из первых пяти ящиков:
P(H 1) = 5/11
Вероятность того, что любой взятый шар содержится в одном из шести ящиков:
P(H 2) = 6/11
Событие произошло – вытащили красный шар. Следовательно, это могло произойти в двух случаях:
а) вытащили из первых пяти ящиков.
P 5 = 5 красных шаров * 5 ящиков / (30 шаров * 5 ящиков) = 1/6
P(P 5 /H 1) = 1/6 * 5/11 = 5/66
б) вытащили из шести других ящиков.
P 6 = 4 красных шара * 6 ящиков / (20 шаров * 6 ящика) = 1/5
P(P 6 /H 2) = 1/5 * 6/11 = 6/55
Итого: P(P 5 /H 1) + P(P 6 /H 2) = 5/66 + 6/55 = 61/330
Следовательно, вероятность того, что наугад взятый красный шар содержится в одном из первых пяти ящиков равна:
P к.ш. (H1) = P(P 5 /H 1) / (P(P 5 /H 1) + P(P 6 /H 2)) = 5/66 / 61/330 = 25/61

Пример 9 . В урне находятся 2 белых, 3 черных и 4 красных шаров. Наудачу вынимают три шара. Какова вероятность, что хотя бы два шара будут одного цвета?
Решение. Всего возможны три варианта исхода событий:
а) среди трех вытащенных шаров оказалось хотя бы два белых.
P б (2) = P 2б
Общее число возможных элементарных исходов для данных испытаний равно числу способов, которыми можно извлечь 3 шара из 9:

Найдем вероятность того, что среди выбранных 3 шаров 2 белых.

Количество вариантов выбора из 2 белых шаров:

Количество вариантов выбора из 7 других шаров третий шар:

б) среди трех вытащенных шаров оказалось хотя бы два черных (т.е. или 2 черных или 3 черных).
Найдем вероятность того, что среди выбранных 3 шаров 2 черных.

Количество вариантов выбора из 3 черных шаров:

Количество вариантов выбора из 6 других шаров одного шара:


P 2ч = 0.214
Найдем вероятность того, что все выбранные шары черные.

P ч (2) = 0.214+0.0119 = 0.2259

в) среди трех вытащенных шаров оказалось хотя бы два красных (т.е. или 2 красных или 3 красных).
Найдем вероятность того, что среди выбранных 3 шаров 2 красных.

Количество вариантов выбора из 4 черных шаров:

Количество вариантов выбора из 5 белых шаров остальные 1 белых:


Найдем вероятность того, что все выбранные шары красные.

P к (2) = 0.357 + 0.0476 = 0.4046
Тогда вероятность, что хотя бы два шара будут одного цвета равна: P = P б (2) + P ч (2) + P к (2) = 0.0833 + 0.2259 + 0.4046 = 0.7138

Пример 10 . В первой урне содержится 10 шаров, из них 7 белых; во второй урне 20 шаров, из них 5 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.
Решение. Вероятность того, что из первой урны извлекли белый шар, равна P(б)1 = 7/10. Соответственно, вероятность извлечения черного шара равна P(ч)1 = 3/10.
Вероятность того, что из второй урны извлекли белый шар, равна P(б)2 = 5/20 = 1/4. Соответственно, вероятность извлечения черного шара равна P(ч)2 = 15/20 = 3/4.
Событие А - из двух шаров взят белый шар
Рассмотрим варианты исхода события А.

  1. из первой урны вытащили белый шар, из второй урны вытащили белый шар. Затем из этих двух шаров вытащили белый шар. P1 = 7/10*1/4 = 7/40
  2. из первой урны вытащили белый шар, из второй урны вытащили черный шар. Затем из этих двух шаров вытащили белый шар. P2 = 7/10*3/4 = 21/40
  3. из первой урны вытащили черный шар, из второй урны вытащили белый шар. Затем из этих двух шаров вытащили белый шар. P3 = 3/10*1/4 = 3/40
Таким образом, вероятность можно найти как сумму вышеуказанных вероятностей.
P = P1 + P2 + P3 = 7/40 + 21/40 + 3/40 = 31/40

Пример 11 . В ящике n теннисных мячей. Из них игранных m . Для первой игры наудачу взяли два мяча и после игры их положили обратно. Для второй игры также наудачу взяли два мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами?
Решение. Рассмотрим событие А – игра во второй раз проводилась новыми мячами. Посмотрим какие события могут привести к этому.
Обозначим через g = n-m, количество новых мячей до вытаскивания.
а) для первой игры вытащили два новых мяча.
P1 = g/n*(g-1)/(n-1) = g(g-1)/(n(n-1))
б) для первой игры вытащили один новый мяч и один уже игранный.
P2 = g/n*m/(n-1) + m/n*g/(n-1) = 2mg/(n(n-1))
в) для первой игры вытащили два игранных мяча.
P3 = m/n*(m-1)/(n-1) = m(m-1)/(n(n-1))

Рассмотрим события второй игры.
а) Вытащили два новых мяча, при условии P1: поскольку ранее для первой игры уже вытащили новые мячи, то для второй игры их количество уменьшилось на 2, g-2.
P(A/P1) = (g-2)/n*(g-2-1)/(n-1)*P1 = (g-2)/n*(g-2-1)/(n-1)*g(g-1)/(n(n-1))
б) Вытащили два новых мяча, при условии P2: поскольку ранее для первой игры уже вытащили один новый мяч, то для второй игры их количество уменьшилось на 1, g-1.
P(A/P2) =(g-1)/n*(g-2)/(n-1)*P2 = (g-1)/n*(g-2)/(n-1)*2mg/(n(n-1))
в) Вытащили два новых мяча, при условии P3: поскольку ранее для первой игры не использовали новых мячей, то для второй игры их количество не изменилось g.
P(A/P3) = g/n*(g-1)/(n-1)*P3 = g/n*(g-1)/(n-1)*m(m-1)/(n(n-1))

Полная вероятность P(A) = P(A/P1) + P(A/P2) + P(A/P3) = (g-2)/n*(g-2-1)/(n-1)*g(g-1)/(n(n-1)) + (g-1)/n*(g-2)/(n-1)*2mg/(n(n-1)) + g/n*(g-1)/(n-1)*m(m-1)/(n(n-1)) = (n-2)(n-3)(n-m-1)(n-m)/((n-1)^2*n^2)
Ответ: P(A)=(n-2)(n-3)(n-m-1)(n-m)/((n-1)^2*n^2)

Пример 12 . В первом, втором и третьем ящиках находится по 2 белых и 3 черных шара, в четвертом и пятом по 1 белому и 1 черному шару. Случайно выбирается ящик и из него извлекается шар. Какова условная вероятность, что выбран четвертый или пятый ящик, если извлеченный шар - белый?
Решение .
Вероятность выбора каждого ящика равна P(H) = 1/5.
Рассмотрим условные вероятности события А - извлечения белого шара.
P(A|H=1) = 2/5
P(A|H=2) = 2/5
P(A|H=3) = 2/5
P(A|H=4) = ½
P(A|H=5) = ½
Полная вероятность извлечения белого шара:
P(A) = 2/5*1/5 + 2/5*1/5 +2/5*1/5 +1/2*1/5 +1/2*1/5 = 0.44
Условная вероятность, что выбран четвертый ящик
P(H=4|A) = 1/2*1/5 / 0.44 = 0.2273
Условная вероятность, что выбран пятый ящик
P(H=5|A) = 1/2*1/5 / 0.44 = 0.2273
Итого, условная вероятность, что выбран четвертый или пятый ящик равна
P(H=4, H=5|A) = 0.2273 + 0.2273 = 0.4546

Пример 13 . В урне было 7 белых и 4 красных шара. Затем в урну положили ещё один шар белого или красного или черного цвета и после перемешивания вынули один шар. Он оказался красным. Какова вероятность, что был положен а) красный шар? б) черный шар?
Решение.
а) красный шар
Событие A - вытащили красный шар. Событие H - положили красный шар. Вероятность, того в урну был положен красный шар P(H=K) = 1 / 3
Тогда P(A|H=K)= 1 / 3 * 5 / 12 = 5 / 36 = 0.139
б) черный шар
Событие A - вытащили красный шар. Событие H - положили черный шар.
Вероятность, того в урну был положен черный шар P(H=Ч) = 1 / 3
Тогда P(A|H=Ч)= 1 / 3 * 4 / 12 = 1 / 9 = 0.111

Пример 14 . Имеются две урны с шарами. В одной 10 красных и 5 синих шаров, во второй 5 красных и 7 синих шаров. Какова вероятность того, что из первой урны наудачу будет вынут красный шар, а из второй синий?
Решение. Пусть событие A1 - из первой урны вынут красный шар; A2 - из второй урны вынут синий шар:
,
События A1 и A2 независимые. Вероятность совместного появления событий A1 и A2 равна

Пример 15 . Имеется колода карт (36 штук). Вынимаются наудачу две карты подряд. Какова вероятность того, что обе вынутые карты будут красной масти?
Решение. Пусть событие A 1 - первая вынутая карта красной масти. Событие A 2 - вторая вынутая карта красной масти. B - обе вынутые карты красной масти. Так как должны произойти и событие A 1 , и событие A 2 , то B = A 1 · A 2 . События A 1 и A 2 зависимые, следовательно, P(B) :
,
Отсюда

Пример 16 . В двух урнах находятся шары, отличающиеся только цветом, причем в первой урне 5 белых шаров, 11 черных и 8 красных, а во второй соответственно 10, 8, 6 шаров. Из обеих урн наудачу извлекается по одному шару. Какова вероятность, что оба шара одного цвета?
Решение. Пусть индекс 1 означает белый цвет, индекс 2 - черный цвет; 3 - красный цвет. Пусть событие A i - из первой урны извлекли шар i-го цвета; событие B j - из второй урны извлекли шар j -го цвета; событие A - оба шара одного цвета.
A = A 1 · B 1 + A 2 · B 2 + A 3 · B 3 . События A i и B j независимые, а A i · B i и A j · B j несовместные при i ≠ j . Следовательно,
P(A)=P(A 1)·P(B 1)+P(A 2)·P(B 2)+P(A 3)·P(B 3) =

Пример 17 . Из урны с 3-мя белыми и 2-мя черными шары вытаскиваются по одному до появления черного. Найдите вероятность того, что из урны будет вытащено 3 шара? 5 шаров?
Решение .
1) вероятность того, что из урны будет вытащено 3 шара (т.е. третий шар будет черным, а первые два - белыми).
P=3/5*2/4*2/3=1/5
2) вероятность того, что из урны будет вытащено 5 шаров
такая ситуация не возможна, т.к. всего 3 белых шара.
P = 0